Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50412
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor溫進德(Jin-Der Wen)
dc.contributor.authorPo-Szu Hsiehen
dc.contributor.author謝伯思zh_TW
dc.date.accessioned2021-06-15T12:39:40Z-
dc.date.available2021-08-24
dc.date.copyright2016-08-24
dc.date.issued2016
dc.date.submitted2016-07-28
dc.identifier.citationAgranovsky, A.A., Dolja, V.V., and Atabekov, J.G. (1982). Structure of the 3' extremity of barley stripe mosaic virus RNA: evidence for internal poly(A) and a 3'-terminal tRNA-like structure. Virology 119, 51-58.
Aitken, C.E., Marshall, R.A., and Puglisi, J.D. (2008). An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments. Biophys J 94, 1826-1835.
Ban, N., Nissen, P., Hansen, J., Moore, P.B., and Steitz, T.A. (2000). The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 289, 905-920.
Berk, V., Zhang, W., Pai, R.D., and Cate, J.H. (2006). Structural basis for mRNA and tRNA positioning on the ribosome. Proc Natl Acad Sci U S A 103, 15830-15834.
Bronson, J.E., Fei, J., Hofman, J.M., Gonzalez, R.L., Jr., and Wiggins, C.H. (2009). Learning rates and states from biophysical time series: a Bayesian approach to model selection and single-molecule FRET data. Biophys J 97, 3196-3205.
Carter, A.P., Clemons, W.M., Brodersen, D.E., Morgan-Warren, R.J., Wimberly, B.T., and Ramakrishnan, V. (2000). Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407, 340-348.
Carter, A.P., Clemons, W.M., Jr., Brodersen, D.E., Morgan-Warren, R.J., Hartsch, T., Wimberly, B.T., and Ramakrishnan, V. (2001). Crystal structure of an initiation factor bound to the 30S ribosomal subunit. Science 291, 498-501.
Chen, G., Chang, K.Y., Chou, M.Y., Bustamante, C., and Tinoco, I., Jr. (2009). Triplex structures in an RNA pseudoknot enhance mechanical stability and increase efficiency of -1 ribosomal frameshifting. Proc Natl Acad Sci U S A 106, 12706-12711.
Chou, M.Y., and Chang, K.Y. (2010). An intermolecular RNA triplex provides insight into structural determinants for the pseudoknot stimulator of -1 ribosomal frameshifting. Nucleic Acids Res 38, 1676-1685.
Cordes, T., Vogelsang, J., and Tinnefeld, P. (2009). On the mechanism of Trolox as antiblinking and antibleaching reagent. J Am Chem Soc 131, 5018-5019.
Dahlquist, K.D., and Puglisi, J.D. (2000). Interaction of translation initiation factor IF1 with the E. coli ribosomal A site. Journal of molecular biology 299, 1-15.
Doty, P., Boedtker, H., Fresco, J.R., Haselkorn, R., and Litt, M. (1959). Secondary structure in ribonucleic acids. Proc Natl Acad Sci USA 45, 482-499.
Forster, T. (1948). Zwischenmolekulare Energiewanderung und Fluoreszenz. Annalen der Physik 437, 55-75.
Frank, J., Zhu, J., Penczek, P., Li, Y., Srivastava, S., Verschoor, A., Radermacher, M., Grassucci, R., Lata, R.K., and Agrawal, R.K. (1995). A model of protein synthesis based on cryo-electron microscopy of the E. coli ribosome. Nature 376, 441-444.
Gualerzi, C., Risuleo, G., and Pon, C.L. (1977). Initial rate kinetic analysis of the mechanism of initiation complex formation and the role of initiation factor IF-3. Biochemistry 16, 1684-1689.
Gualerzi, C.O., and Pon, C.L. (1990). Initiation of mRNA translation in prokaryotes. Biochemistry 29, 5881-5889.
Ha, T. (2001). Single-molecule fluorescence resonance energy transfer. Methods 25, 78-86.
Hengesbach, M., Kim, N.K., Feigon, J., and Stone, M.D. (2012). Single-molecule FRET reveals the folding dynamics of the human telomerase RNA pseudoknot domain. Angew Chem Int Ed Engl 51, 5876-5879.
Kapanidis, A.N., and Strick, T. (2009). Biology, one molecule at a time. Trends in biochemical sciences 34, 234-243.
Kisselev, L.L., and Buckingham, R.H. (2000). Translational termination comes of age. Trends Biochem Sci 25, 561-566.
La Teana, A., Gualerzi, C.O., and Brimacombe, R. (1995). From stand-by to decoding site. Adjustment of the mRNA on the 30S ribosomal subunit under the influence of the initiation factors. Rna 1, 772-782.
Laursen, B.S., Sorensen, H.P., Mortensen, K.K., and Sperling-Petersen, H.U. (2005). Initiation of protein synthesis in bacteria. Microbiology and molecular biology reviews : MMBR 69, 101-123.
Liljas, A., and al-Karadaghi, S. (1997). Structural aspects of protein synthesis. Nature structural biology 4, 767-771.
Liu, T., Kaplan, A., Alexander, L., Yan, S., Wen, J.D., Lancaster, L., Wickersham, C.E., Fredrick, K., Noller, H., Tinoco, I., et al. (2014). Direct measurement of the mechanical work during translocation by the ribosome. Elife 3, e03406.
Michalet, X., Weiss, S., and Jager, M. (2006). Single-molecule fluorescence studies of protein folding and conformational dynamics. Chemical reviews 106, 1785-1813.
Michiels, P.J., Versleijen, A.A., Verlaan, P.W., Pleij, C.W., Hilbers, C.W., and Heus, H.A. (2001). Solution structure of the pseudoknot of SRV-1 RNA, involved in ribosomal frameshifting. J Mol Biol 310, 1109-1123.
Mihalusova, M., Wu, J.Y., and Zhuang, X. (2011). Functional importance of telomerase pseudoknot revealed by single-molecule analysis. Proc Natl Acad Sci U S A 108, 20339-20344.
Moazed, D., and Noller, H.F. (1989). Intermediate states in the movement of transfer RNA in the ribosome. Nature 342, 142-148.
Nissen, P., Hansen, J., Ban, N., Moore, P.B., and Steitz, T.A. (2000). The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920-930.
Nixon, P.L., Rangan, A., Kim, Y.G., Rich, A., Hoffman, D.W., Hennig, M., and Giedroc, D.P. (2002). Solution structure of a luteoviral P1-P2 frameshifting mRNA pseudoknot. J Mol Biol 322, 621-633.
Palade, G.E. (1955). A small particulate component of the cytoplasm. J Biophys Biochem Cytol 1, 59-68.
Petrelli, D., LaTeana, A., Garofalo, C., Spurio, R., Pon, C.L., and Gualerzi, C.O. (2001). Translation initiation factor IF3: two domains, five functions, one mechanism? EMBO J 20, 4560-4569.
Qin, P., Yu, D., Zuo, X., and Cornish, P.V. (2014). Structured mRNA induces the ribosome into a hyper-rotated state. EMBO Rep 15, 185-190.
Qu, X., Wen, J.D., Lancaster, L., Noller, H.F., Bustamante, C., and Tinoco, I., Jr. (2011a). The ribosome uses two active mechanisms to unwind messenger RNA during translation. Nature 475, 118-121.
Qu, X.H., Wen, J.D., Lancaster, L., Noller, H.F., Bustamante, C., and Tinoco, I. (2011b). The ribosome uses two active mechanisms to unwind messenger RNA during translation. Nature 475, 118-121.
Ramakrishnan, V. (2002). Ribosome structure and the mechanism of translation. Cell 108, 557-572.
Rodnina, M.V., Savelsbergh, A., Katunin, V.I., and Wintermeyer, W. (1997). Hydrolysis of GTP by elongation factor G drives tRNA movement on the ribosome. Nature 385, 37-41.
Roy, R., Hohng, S., and Ha, T. (2008). A practical guide to single-molecule FRET. Nat Methods 5, 507-516.
Schluenzen, F., Tocilj, A., Zarivach, R., Harms, J., Gluehmann, M., Janell, D., Bashan, A., Bartels, H., Agmon, I., Franceschi, F., et al. (2000). Structure of functionally activated small ribosomal subunit at 3.3 angstroms resolution. Cell 102, 615-623.
Schurer, H., Lang, K., Schuster, J., and Morl, M. (2002). A universal method to produce in vitro transcripts with homogeneous 3' ends. Nucleic Acids Res 30, e56.
Sekar, R.B., and Periasamy, A. (2003). Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. J Cell Biol 160, 629-633.
Shatsky, I.N., Bakin, A.V., Bogdanov, A.A., and Vasiliev, V.D. (1991). How does the mRNA pass through the ribosome? Biochimie 73, 937-945.
Shen, L.X., and Tinoco, I., Jr. (1995). The structure of an RNA pseudoknot that causes efficient frameshifting in mouse mammary tumor virus. J Mol Biol 247, 963-978.
Steitz, T.A. (2008). A structural understanding of the dynamic ribosome machine. Nat Rev Mol Cell Biol 9, 242-253.
Stryer, L., and Haugland, R.P. (1967). Energy transfer: a spectroscopic ruler. Proceedings of the National Academy of Sciences of the United States of America 58, 719-726.
Stump, W.T., and Hall, K.B. (1993). SP6 RNA polymerase efficiently synthesizes RNA from short double-stranded DNA templates. Nucleic Acids Res 21, 5480-5484.
Takyar, S., Hickerson, R.P., and Noller, H.F. (2005). mRNA helicase activity of the ribosome. Cell 120, 49-58.
Theimer, C.A., Blois, C.A., and Feigon, J. (2005a). Structure of the human telomerase RNA pseudoknot reveals conserved tertiary interactions essential for function. Mol Cell 17, 671-682.
Theimer, C.A., Blois, C.A., and Feigon, J. (2005b). Structure of the human telomerase RNA pseudoknot reveals conserved tertiary interactions essential for function. Mol Cell 17, 671-682.
Valle, M., Zavialov, A., Sengupta, J., Rawat, U., Ehrenberg, M., and Frank, J. (2003). Locking and unlocking of ribosomal motions. Cell 114, 123-134.
Walter, N.G., Huang, C.Y., Manzo, A.J., and Sobhy, M.A. (2008). Do-it-yourself guide: how to use the modern single-molecule toolkit. Nature methods 5, 475-489.
Weinger, J.S., Parnell, K.M., Dorner, S., Green, R., and Strobel, S.A. (2004). Substrate-assisted catalysis of peptide bond formation by the ribosome. Nature structural & molecular biology 11, 1101-1106.
Wimberly, B.T., Brodersen, D.E., Clemons, W.M., Jr., Morgan-Warren, R.J., Carter, A.P., Vonrhein, C., Hartsch, T., and Ramakrishnan, V. (2000). Structure of the 30S ribosomal subunit. Nature 407, 327-339.
Yusupova, G.Z., Yusupov, M.M., Cate, J.H., and Noller, H.F. (2001). The path of messenger RNA through the ribosome. Cell 106, 233-241.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50412-
dc.description.abstract偽結是一種在 RNA 中重要而複雜的結構,在各種生物反應中例如 RNA 的複製、轉錄與轉譯等等,皆扮演著重要的角色,許多 RNA 病毒更透過偽結作為刺激物,進而造成計畫性核醣體框架位移 (Programmed Ribosomal Frameshifting)。先前研究利用人類端粒酶 RNA 中所衍生的 DU177 偽結作為研究模板,其結構為兩個具有鹼基配對區域的螺旋莖 (helical stem) 透過兩個單股環 (single-stranded loop) 連接,研究發現若將此段偽結結構放置於一段滑動序列 (slippery sequence) 下游,在進行轉譯作用的過程中,可有效刺激 -1 計畫性框架位移的發生。另外, mRNA 必須呈現單股狀態才能進行轉譯作用,先前研究指出核醣體本身在轉譯作用進行時即具有解旋酶 (helicase) 的活性,可以解開 mRNA 所形成的二級結構,但目前對於偽結結構如何被核醣體解開的分子機制尚未明瞭。
本篇研究透過單分子螢光共振能量轉移技術來探討偽結結構與核醣體間的交互作用。研究結果發現核醣體在進行轉譯的過程中,當部分偽結結構序列進入核醣體時,會因受到核醣體的影響使其結構產生扭曲,這現象可能和框架位移的發生有所關聯。但隨著轉譯作用的持續進行,核醣體將會克服結構屏障進而將偽結中第一個 stem 的鹼基對全數解開。根據此結果推測,由於此偽結含有數個提高其穩定度的三重鹼基對 (base triples),即使部分偽結的序列進入核醣體時,可能依舊保持偽結結構狀態。
zh_TW
dc.description.abstractPseudoknots are important and complex RNA structures. They play critical roles in many biological processes, such as RNA replication, transcription and translation. Several viruses use a pseudoknot structure to induce programmed ribosomal frameshifting during translation. Previous research used an H-type pseudoknot derived from the human telomerase RNA (DU177) as a model system, which has two helical stems connected by two single-stranded loops. DU177 can function as a -1 ribosomal frameshifting stimulator when it is positioned downstream of a slippery sequence. In addition, mRNA structures must be unfolded to a single-stranded form to be translated. Previous research has revealed that the ribosome has intrinsic helicase activity during translation. However, the detailed molecular mechanism of how a pseudoknot is unwound by the ribosome remains unclear.
In this study, we use single-molecule fluorescence resonance energy transfer (smFRET) to elucidate how a pseudoknot is unwound by the ribosome. Our results show that when a partial pseudoknot sequence enters the ribosome during translation, the pseudoknot structure is distorted by the ribosome. The structural distortion may play a role in inducing the ribosome to undergo frameshifting. However, the ribosome can overcome the steric barrier to unwind the first stem of the pseudoknot completely when translation proceeds further. According to our results, we propose that, due to the presence of several base triples that stabilize the whole RNA structure, the folding of the pseudoknot may be maintained even if a partial sequence enters the ribosome.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:39:40Z (GMT). No. of bitstreams: 1
ntu-105-R03b43004-1.pdf: 2451227 bytes, checksum: 730d6ed7105edde519ae51666f6a33ec (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
摘要 iii
ABSTRACT iv
目錄 v
圖目錄 viii
表目錄 ix
縮寫對照表 x
第一章 緒論 1
1.1 核醣體 1
1.1.1 簡介 1
1.1.2 解旋機制 2
1.2 轉譯作用 2
1.2.1 起始階段 2
1.2.2 延長階段 3
1.2.3 終止階段 4
1.3 RNA 偽結 (RNA Pseudoknot) 5
1.4 單分子技術 5
1.4.1 簡介 5
1.4.2 螢光共振能量轉移 (fluorescence resonance energy transfer) 6
1.5 研究動機 7
第二章 材料與方法 9
2.1 材料 9
2.1.1 勝任細胞品系 9
2.1.2 質體 9
2.1.3 載體構築序列及引子設計 9
2.1.4 酵素 11
2.1.5 藥品 11
2.1.6 試劑 13
2.1.7 溶液 13
2.1.7 樣本配製 15
2.2 方法 16
2.2.1 質體構築及純化 16
2.2.2 細胞外轉錄作用 (in vitro transcription) 16
2.2.3 RNA 螢光標定及純化 17
2.2.4 DNA 夾板 RNA 連接反應 (DNA - splinted RNA ligation) 18
2.2.5 DNA 引子及 RNA 黏合反應 19
2.2.6 單分子螢光共振能量轉移實驗 19
第三章 結果 23
3.1 RNA 樣本製備 23
3.1.1 製備具 SD 序列及起始密碼子之 RNA 片段 - pPK RNA 23
3.1.2 RNA 螢光標定及純化 23
3.1.3 DNA 夾板 RNA 連接反應 24
3.2 確認 RNA 樣本 FRET 效率 25
3.3 觀測 PK 結構受核醣體逐步解開之 FRET 效率變化 26
3.4 減少實驗中可能存在的背景訊號 28
第四章 討論 29
4.1 IVT 產物無法進行接合反應 29
4.2 偽結受核醣體作用產生的結構變化 29
4.3 核醣體受偽結結構的影響 31
4.4 實驗可能具背景訊號 31
4.5 引子無法有效與偽結結構中 stem 1 間鹼基配對競爭 32
4.6 未來展望 32
參考文獻 34
附錄 – Intermolecular RNA triplex 69
圖 1. 樣本製備流程示意圖 40
圖 2. pT7SP6-PK 載體構築示意圖及部分序列示意圖 41
圖 3. 確認細胞外轉錄產物片段大小及品質 42
圖 4. RNA 螢光標定與 HPLC 純化 43
圖 5. IVT 產物 pPK RNA 無法進行連接反應 44
圖 6. DNA 夾板 RNA 連接反應 45
圖 7. 單分子螢光共振能量轉移實驗設置 46
圖 8. 偽結(PK MFKEY full)及髮夾(PK stem 1(-) full)結構序列示意圖及FRET效率 47
圖 9. 預期偽結於轉譯過程中受核醣體解開鍵結之序列及結構狀態示意圖。 49
圖 10. PK MFKEY-IC 轉換效率分佈圖及時間軌跡圖 51
圖 11. PK MFKEY-IC_TM(F) 轉換效率分佈圖及時間軌跡圖 52
圖 12. PK MFKEY-IC_TM(FK) 轉換效率分佈圖及時間軌跡圖 54
圖 13. PK MFKEY-IC_TM(FKE) 轉換效率分佈圖及時間軌跡圖 56
圖 14. PK MFKEY-IC_TM(FKEY) 轉換效率分佈圖及時間軌跡圖 58
圖 15. PK 結構受核醣體逐步解開之 FRET 效率變化及各反應狀態下 FRET 效率間轉換頻率 60
圖 16. 反應條件中加入 50S 及 IF-2,PK 結構受核醣體逐步解開之 FRET 效率變化及各反應狀態下 FRET 效率間轉換頻率 62
圖 17. 以引子與偽結結構中 stem 1 間鹼基配對競爭 64
表 1. 各單分子實驗樣本 RNA 全長序列 66
表 2. 各反應狀態下 FRET 效率統整 67
表 3. PK MFKEY full RNA 各反應狀態下 FRET 效率轉換頻率統整 68
dc.language.isozh-TW
dc.title利用單分子螢光共振能量轉移技術探討 RNA 偽結與核醣體間交互作用zh_TW
dc.titleStudy of Interactions Between the mRNA Pseudoknot and the Ribosome with Single-Molecule FRETen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張功耀(Kung-Yao Chang),楊立威(Lee-Wei Yang)
dc.subject.keyword偽結,核醣體,轉譯作用,單分子,螢光共振能量轉移技術,zh_TW
dc.subject.keywordpseudoknot,ribosome,translation,single-molecule,fluorescence resonance energy transfer (FRET),en
dc.relation.page74
dc.identifier.doi10.6342/NTU201601522
dc.rights.note有償授權
dc.date.accepted2016-07-28
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
2.39 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved