Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50400
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor宋孔彬(Kung-Bin Sung)
dc.contributor.authorShin-Shyang Huangen
dc.contributor.author黃信祥zh_TW
dc.date.accessioned2021-06-15T12:39:12Z-
dc.date.available2016-08-02
dc.date.copyright2016-08-02
dc.date.issued2016
dc.date.submitted2016-07-28
dc.identifier.citation1. Rappaz, B., et al., Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer. Cytometry Part A, 2008. 73A(10): p. 895-903.
2. Yashunsky, V., et al., Surface plasmon-based infrared spectroscopy for cell biosensing. Journal of Biomedical Optics, 2012. 17(8): p. 0814091-0814098.
3. Pham, H.V., et al., Real Time Blood Testing Using Quantitative Phase Imaging. PLoS ONE, 2013. 8(2): p. e55676.
4. Rinehart, M., Y. Zhu, and A. Wax, Quantitative phase spectroscopy. Biomedical Optics Express, 2012. 3(5): p. 958-965.
5. Gabriel, P., Common-Path Methods, in Quantitative Phase Imaging of Cells and Tissues. 2011, McGraw Hill Professional, Access Engineering.
6. Park, Y., et al., Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum. Proceedings of the National Academy of Sciences, 2008. 105(37): p. 13730-13735.
7. Leith, E.N., J. Upatnieks, and K.A. Haines, Microscopy by Wavefront Reconstruction*. Journal of the Optical Society of America, 1965. 55(8): p. 981-986.
8. Leith, E.N. and J. Upatnieks, Reconstructed Wavefronts and Communication Theory*. Journal of the Optical Society of America, 1962. 52(10): p. 1123-1130.
9. Vanligten, R.F. and H. Osterberg, Holographic Microscopy. Nature, 1966. 211(5046): p. 282-283.
10. Creath, K., Phase-Shifting Holographic Interferometry, in Holographic Interferometry: Principles and Methods, P.K. Rastogi, Editor. 1994, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 109-150.
11. Popescu, G., et al., Fourier phase microscopy for investigation of biological structures and dynamics. Optics Letters, 2004. 29(21): p. 2503-2505.
12. Ikeda, T., et al., Hilbert phase microscopy for investigating fast dynamics in transparent systems. Optics Letters, 2005. 30(10): p. 1165-1167.
13. Popescu, G., et al., Diffraction phase microscopy for quantifying cell structure and dynamics. Optics Letters, 2006. 31(6): p. 775-777.
14. Sung, Y., et al., Optical diffraction tomography for high resolution live cell imaging. Optics Express, 2009. 17(1): p. 266-277
15. Veselov, A.P., Huygens' principle and integrable systems. Physica D: Nonlinear Phenomena, 1995. 87(1–4): p. 9-13.
16. Radon, J., On the determination of functions from their integral values along certain manifolds. IEEE Transactions on Medical Imaging, 1986. 5(4): p. 170-176.
17. Wolf, E., Principles and development of diffraction tomography. Trends in Optics, 1996. 3: p. 83-110.
18. Hsieh, C.-M., Three-dimensional refractive index microscope for analyzing cancer cell within cell cycle and classification of Leukocyte. National Taiwan University Master Thesis, 2015.
19. Choi, W., et al., Tomographic phase microscopy. Nat Meth, 2007. 4(9): p. 717-719.
20. Jung, J., et al., Hyperspectral optical diffraction tomography. Optics Express, 2016. 24(3): p. 2006-2012.
21. Park, Y., et al., Spectroscopic phase microscopy for quantifying hemoglobin concentrations in intact red blood cells. Optics Letters, 2009. 34(23): p. 3668-3670.
22. Ding, H. and G. Popescu, Instantaneous spatial light interference microscopy. Optics Express, 2010. 18(2): p. 1569-1575.
23. Wang, Z., et al., Spatial light interference microscopy (SLIM). Optics Express, 2011. 19(2): p. 1016-1026.
24. Su, J.-W., et al., Digital holographic microtomography for high-resolution refractive index mapping of live cells. Journal of Biophotonics, 2013. 6(5): p. 416-424.
25. Wang, Z. and B. Han, Advanced iterative algorithm for phase extraction of randomly phase-shifted interferograms. Optics Letters, 2004. 29(14): p. 1671-1673.
26. Kim, Y., K. Kim, and Y.K. Park, Measurement Techniques for Red Blood Cell Deformability: Recent Advances. 2012: INTECH Open Access Publisher.
27. Barer, R., Interference Microscopy and Mass Determination. Nature, 1952. 169(4296): p. 366-367.
28. Popescu, G., et al., Erythrocyte structure and dynamics quantified by Hilbert phase microscopy. Journal of Biomedical Optics, 2005. 10(6): p. 060503-060503-3.
29. Popescu, G., et al., Optical Measurement of Cell Membrane Tension. Physical Review Letters, 2006. 97(21): p. 218101.
30. Park, Y., et al., Measurement of red blood cell mechanics during morphological changes. Proceedings of the National Academy of Sciences, 2010. 107(15): p. 6731-6736.
31. Barer, R., Refractometry and Interferometry of Living Cells*†. Journal of the Optical Society of America, 1957. 47(6): p. 545-556.
32. Popescu, G., K. Badizadegan, and R.R. Dasari, Observation of dynamic subdomains in red blood cells. Journal of Biomedical Optics, 2006. 11(4): p. 040503-040503-3.
33. Rappaz, B., et al., Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy. Blood Cells, Molecules, and Diseases, 2009. 42(3): p. 228-232.
34. Park, Y., et al., Metabolic remodeling of the human red blood cell membrane. Proceedings of the National Academy of Sciences, 2010. 107(4): p. 1289-1294.
35. Kang, J.W., et al., Combined confocal Raman and quantitative phase microscopy system for biomedical diagnosis. Biomedical Optics Express, 2011. 2(9): p. 2484-2492.
36. Byun, H., et al., Optical measurement of biomechanical properties of individual erythrocytes from a sickle cell patient. Acta biomaterialia, 2012. 8(11): p. 4130-4138.
37. Friebel, M. and M. Meinke, Model function to calculate the refractive index of native hemoglobin in the wavelength range of 250-1100 nm dependent on concentration. Applied Optics, 2006. 45(12): p. 2838-2842.
38. Zhernovaya, O., et al., The refractive index of human hemoglobin in the visible range. Physics in Medicine and Biology, 2011. 56(13): p. 4013.
39. Lue, N., et al., Live cell refractometry using microfluidic devices. Optics Letters, 2006. 31(18): p. 2759-2761.
40. Hale, G.M. and M.R. Querry, Optical Constants of Water in the 200-nm to 200-μm Wavelength Region. Applied Optics, 1973. 12(3): p. 555-563.
41. Gass, J., A. Dakoff, and M.K. Kim, Phase imaging without 2π ambiguity by multiwavelength digital holography. Optics Letters, 2003. 28(13): p. 1141-1143.
42. Hsu, W.-C., et al., Tomographic diffractive microscopy of living cells based on a common-path configuration. Optics Letters, 2014. 39(7): p. 2210-2213.
43. Sultanovaa, N., S. Kasarovaa, and I. Nikolovb, Dispersion Properties of Optical Polymers. ACTA PHYSICA POLONICA A, 2009. 116(4): p. p. 585-587.
44. Fang-Yen, C., et al., Video-rate tomographic phase microscopy. Journal of Biomedical Optics, 2011. 16(1): p. 011005-011005-5.
45. Hategan, A., et al., Topographical Pattern Dynamics in Passive Adhesion of Cell Membranes. Biophysical Journal. 87(5): p. 3547-3560.
46. Robles, F.E., S. Chowdhury, and A. Wax, Assessing hemoglobin concentration using spectroscopic optical coherence tomography for feasibility of tissue diagnostics. Biomedical Optics Express, 2010. 1(1): p. 310-317.
47. Prahl, S., Optical Absorption of Hemoglobin. http://omlc.ogi.edu/spectra/hemoglobin/, 1999.
48. Arhab, S., et al., Full wave optical profilometry. Journal of the Optical Society of America A, 2011. 28(4): p. 576-580.
49. A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics, 1979. 9(1): p. 62-66.
50. 由貧血談血液疾病. 1977: 正中書局
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50400-
dc.description.abstract生活中貧血是常見的人體疾病,在輕度時病患並不會有感覺到異常,有時也會伴隨其他疾病而發生,貧血是由於血液的攜氧效率不足所致,而血液的攜氧效率與紅血球的形態有關,包含紅血球體積、形狀等,臨床對於懷疑有貧血的病患第一步就是抽血檢驗,並利用全自動分析儀計算出紅血球的相關數值,供醫師做診斷。
貧血有許多種類別,例如:缺鐵性貧血、海洋性貧血、再生不良性貧血、骨髓化生不良症等等,不同的類型有不同的診斷依據,在本篇研究當中,著重於海洋性貧血,海洋性貧血是由於基因變異導致紅血球體積小及血紅素含量低落,其所影響的因素較為單一,與血小板、白血球的多寡影響無關,故選用此疾病作為研究主題。
臨床所使用的儀器是採用阻抗計數及流式細胞儀分析,此儀器的優勢是可以提供大量且快速的檢驗結果,信息量大,但缺點是無法比較單一血球間的差異,因其所得資訊是利用電學所換算的資訊無法觀察到血球型態,且儀器價格及維護費昂貴,故全自動分析儀可以作為臨床初步的診斷,若要更進一步做分析,仍需人工處理染色分析。基於本實驗室所開發的三維折射率顯微術的應用,藉由干涉影像量測樣本完整資訊,再透過光學繞射斷層演算法,類似於電腦斷層的掃描概念重建出三維影像,並對單一血球做幾何量化分析,最後再比較不同顆之間的數值差異,包含總相位、體積、表面積、球型指數、血紅素含量、血球內血紅素濃度、折射率、折射率增益值,其中折射率增益值會透過不同濃度之人體萃取血紅素溶液後,打入微流道量測而得,結果顯示海洋性貧血之折射率增益值標準差較正常人大,其他幾何參數及量化參數則皆有統計上顯著性差異。
zh_TW
dc.description.abstractHematological properties of erythrocytes are associated with various blood-related diseases. Clinically, physicians make a diagnosis mainly based on blood reports obtained using Complete Blood Count (CBC), which is a common tool to measure average values of fundamental indicators such as the volume, hemoglobin content and hemoglobin concentration of all erythrocytes analyzed. However, the information about individual erythrocytes, as well as morphological information, is unavailable for physicians. Common-path tomographic diffractive microscope (cTDM) is a novel three-dimensional (3-D) quantitative phase imaging technique that can acquire 3-D refractive index (RI) images of living cells. We employed cTDM to acquire 3-D RI images of erythrocytes obtained from normal volunteers and patients with mild thalassemia. Only about 0.5 μL of blood is sufficient for imaging with cTDM while CBC needs at least 1 mL. Additionally, we calculated the dry mass of each erythrocyte from phase images after experimentally estimating the specific refractive increment of hemoglobin using custom-made microfluidic channels. The diagnostic accuracy of various indices demonstrates that the total phase and the ratio of volume to surface area are the best parameters to distinguish between the normal and thalassemia erythrocytes.en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:39:12Z (GMT). No. of bitstreams: 1
ntu-105-R03945023-1.pdf: 6211682 bytes, checksum: e855170acb1664a7f7f81f4809288223 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員審定書 I
致謝 II
中文摘要 III
Abstract IV
目錄 V
圖目錄 VII
圖表目錄 X
第一章、 導論 1
1.1. 研究背景 1
1.2. 研究動機及目標 2
第二章、 理論與文獻回顧 3
2.1. 臨床參數檢驗方法及貧血診斷 3
2.1.1臨床全自動全血分析儀簡介 3
2.1.2臨床參數簡介 5
2.1.3海洋性貧血簡介 6
2.2. 定量式相位影像系統之原理與發展回顧 7
2.2.1傅立葉相位顯微術(Fourier Phase Microscopy, FPM) 8
2.2.2希爾伯相位顯微術(Hilbert Phase Microscopy, HPM) 9
2.2.3繞射相位顯微術(Diffraction Phase Microscopy, DPM) 10
2.3. 繞射斷層掃描理論(OPTICAL DIFFRACTION TOMOGRAPHY, ODT) 11
2.4. 三維折射率顯微鏡 13
2.5. 定量式顯微鏡在紅血球的相關研究 15
2.6. 量測血紅素折射率增益值的相關文獻 18
2.7. 微流道的應用 19
第三章、 方法與材料 21
3.1. 共光路系統 (COMMON-PATH SYSTEM) 21
3.1.1 小球樣本製作 25
3.1.2 樣本放大率計算 26
3.1.3 掃描角度計算 27
3.1.4 雙軸掃描 28
3.2. 紅血球樣本配置 29
3.3. 血紅素 31
3.3.1 血紅素萃取 31
3.3.2 吸收光譜量測 32
3.4. 微流道 33
3.4.1 製程與翻模 33
3.4.2 實驗流程 36
第四章、 實驗結果 38
4.1. 系統擷取影像參數分析 38
4.2. 血紅素 41
4.3. 紅血球 45
第五章、 問題與討論 57
5.1. 血紅素 57
5.2. 紅血球 59
第六章、 結論及未來展望 62
第七章、 參考文獻 64
附錄一、光路校正步驟 68
dc.language.isozh-TW
dc.title利用三維折射率顯微術應用於定量式分析海洋性貧血zh_TW
dc.titleThree-dimensional refractive-index microscope for analyzing thalassemiaen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃念祖,吳尚儒
dc.subject.keyword三維折射率顯微鏡,海洋性貧血,紅血球,血紅素,微流道,zh_TW
dc.subject.keywordRed blood cell,hemoglobin,thalassemia,microfluidics,three-dimensional refractive microscope,en
dc.relation.page70
dc.identifier.doi10.6342/NTU201600375
dc.rights.note有償授權
dc.date.accepted2016-07-28
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
6.07 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved