Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50399
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor李貫銘
dc.contributor.authorYu-Ting Yehen
dc.contributor.author葉昱廷zh_TW
dc.date.accessioned2021-06-15T12:39:10Z-
dc.date.available2019-08-02
dc.date.copyright2016-08-02
dc.date.issued2016
dc.date.submitted2016-07-28
dc.identifier.citation[1]http://www.worldautosteel.org.
[2]http://www.libnet.sh.cn:82/gate/big5/www.istis.sh.cn/list/list.aspx?id=466.
[3]洪英治, '先進高強度鋼板沖壓成形包辛格效應之研究,' 國立台灣大學機械工程研究所碩士論文, 2011.
[4]顏暄明, '雙軸拉伸試驗夾治具機構與試片形狀之優化設計,' 國立台灣大學機械工程研究所碩士論文, 2015.
[5]L. Sturmer, I. Harter, and J. de Souza, 'A study on drawbead restraining force effectiveness,' Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 38, pp. 109-117, 2016.
[6]F.-K. Chen and P.-C. Tszeng, 'An analysis of drawbead restraining force in the stamping process,' International Journal of Machine Tools and Manufacture, vol. 38, pp. 827-842, 1998.
[7]Y. Lim, R. Venugopal, and A. G. Ulsoy, Process Control for Sheet-metal Stamping: Springer, 2013.
[8]D. Lloyd, 'Metallurgical engineering in the pressed metal industry,' Sheet Metal Industries, vol. 39, pp. 7-19, 1962.
[9]M. Painter and R. Pearce, 'Metal flow through a drawbead,' Sheet Metal Ind., vol. 53, p. 12, 1976.
[10] H. Nine, 'Drawbead forces in sheet metal forming,' in Mechanics of Sheet Metal Forming, ed: Springer, 1978, pp. 179-211.
[11] H. D. Nine, 'The applicability of Coulomb’s friction law to drawbeads in sheet metal forming,' Journal of applied metalworking, vol. 2, pp. 200-210, 1982.
[12] N.-M. Wang, 'A mathematical model of drawbead forces in sheet metal forming,' Journal of applied metalworking, vol. 2, pp. 193-199, 1982.
[13] N.-M. Wang and V. Shah, 'Drawbead design and performance,' Journal of Materials Shaping Technology, vol. 9, pp. 21-26, 1991.
[14]N. Triantafyllidis, B. Maker, and S. K. Samanta, 'An analysis of drawbeads in sheet metal forming: Part I—problem formulation,' Journal of Engineering Materials and Technology, vol. 108, pp. 321-327, 1986.
[15]B. Levy, 'Development of a predictive model for draw bead restraining force utilizing work of Nine and Wang,' Journal of applied metalworking, vol. 3, pp. 38-44, 1983.
[16]T. B. Stoughton, 'Model of drawbead forces in sheet metal forming,' in Proceedings of the 15th biennial IDDRG Congress, 1988, pp. 205-215.
[17]J. Cao and M. C. Boyce, 'Draw bead penetration as a control element of material flow,' SAE Technical Paper 0148-7191, 1993.
[18]K. Weinmann, J. Michler, V. Rao, and A. Kashani, 'Development of a computer-controlled drawbead simulator for sheet metal forming,' CIRP Annals-Manufacturing Technology, vol. 43, pp. 257-261, 1994.
[19]J. Michler, A. Kashani, S. Majlessi, and K. Weinmann, 'Feedback control of sheet metal strip drawing, by drawbead penetration adjustment,' ASME-PUBLICATIONS-PED, vol. 64, pp. 181-181, 1993.
[20]K. Siegert and E. Doege, 'CNC hydraulic multipoint blankholder system for sheet metal forming presses,' CIRP Annals-Manufacturing Technology, vol. 42, pp. 319-322, 1993.
[21]K. J. Weinmann and L. Rui, 'The effect of active drawbeads on depth of draw in the forming of aluminum panels,' Advanced Technology of Plasticity, vol. 3, pp. 2031-2038, 1999.
[22]R. Li and K. J. Weinmann, 'Formability in non-symmetric aluminium panel drawing using active drawbeads,' CIRP Annals-Manufacturing Technology, vol. 48, pp. 209-212, 1999.
[23]S. Xu, On the formability of sheet metals: Part A: prediction of forming limits based on Hill's 1993 yield criterion, Part B: effect of drawbeds on sheet formability, 1998.
[24]M. L. Bohn, Optimization of the sheet metal stamping process: Closed-loop active drawbead control combined with in-die process sensing: UMI Dissertation services, 1999.
[25]W. J. Emblom, Closed-loop control of the sheet metal stamping process with active drawbeads, a flexible blankholder and variable active blank holder forces: ProQuest, 2006.
[26]D. E. Green, 'An Experimental Technique to Determine the Behaviour of Sheet Metal in a Drawbead ' Industrial Research & Development Institute 2001.
[27]楊德森, '基於可控拉深筋技術之高強度鋼板拉伸性能優化及回彈分析,' 2010.
[28]Y. Keum, J. Kim, and B. Ghoo, 'Expert drawbead models for finite element analysis of sheet metal forming processes,' International journal of solids and structures, vol. 38, pp. 5335-5353, 2001.
[29]http://www.numisheet2011.org/index.html?Pagenum=54.
[30]P. Chen and M. Koc, 'Simulation of springback variation in forming of advanced high strength steels,' Journal of Materials Processing Technology, vol. 190, pp. 189-198, 2007.
[31]S. D. D. M. K. Dr. Stuart Keeler, M.Sc., 'Advanced High-Strength Steels Application Guidelines V5.'
[32]李雙義, '冷沖模具設計.'
[33]M. L. Bohn, S. U. Jurthe, and K. J. Weinmann, 'A New Multi-point Active Drawbead Forming Die: Model Development for Process Optimization,' 1998.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50399-
dc.description.abstract隨著環保意識的覺醒及日趨嚴重的溫室效應,為了降低二氧化碳的排放量,車體輕量化成為全球汽車廠一致的目標。先進高強度鋼具備輕量化及高強度化之特點,因此已逐漸應用於汽車結構件中。但隨著鋼板強度之提升,側壁捲曲及側壁外開等回彈缺陷越趨嚴重。為了改善高強度鋼之沖壓成形缺陷,於模具上設置阻料條是一種常見的方式。透過適當的設置阻料條可以有效的降低回彈、皺褶及扭曲等成形缺陷。然而阻料條之設計及修改除了仰賴個人經驗之外,所需耗費的時間成本也相當可觀,且由於先進高強度鋼延伸率較低,沖壓過程中板材容易發生破裂,傳統的阻料條難以應用於先進高強度鋼。基於降低修改阻料條的時間與成本及運用於先進高強度鋼等目的,本研究擬探討可調式阻料條運用於汽車結構件板金成形的可行性。
本研究的重點在於可調式阻料條設計技術之建立,同時提出一種新型可調式阻料條機構之設計概念。由於先進高強度鋼與一般的低強度鋼相比之下包辛格效應較為明顯,因此首先使用真實阻料條及等效阻料條進行模擬,探討包辛格效應對於側壁捲曲之預測是否會有所影響。模具設定參考NUMISHEET 2011之U形引伸試驗。模擬結果顯示對於側壁捲曲之預測,使用真實阻料條能準確模擬沖壓過程中包辛格效應的影響。接著比較常見的阻料條種類及其造型參數對於側壁捲曲的影響,根據模擬結果,半圓形阻料條最適合應用於改善汽車結構件側壁捲曲。因此針對半圓形阻料條比較不同阻料條設計參數對於側壁捲曲、減薄率的影響,並且透過模擬分析模具接觸力隨沖壓過程之變化,提出可調式阻料條之設計原則。根據模擬結果顯示,透過此流程可以在確保板材不發生破裂的情形下有效的改善側壁捲曲現象,無論是780、980或1180級高強度鋼側壁捲曲半徑皆可達1000mm以上。最後根據上述歸納出之結論,提出一種可調式阻料條機構之設計概念。
zh_TW
dc.description.abstractAs environmental consciousness rises and greenhouse effect becomes worse, design for lightweight automobiles becomes a major goal for vehicle manufacturers in order to reduce 퐶푂2 emissions. Because advanced high strength steels (AHSS) are lightweight and high strength, AHSS have been widely used in automobile structural parts. However, as the strength of steels increases, stamping defects such as sidewall curl and distortion become worse. In order to reduce stamping defects of AHSS, such as springback, wrinkling and distortion, drawbeads are often used in stamping process. In order to design drawbeads quickly and properly in stamping processes, this study investigates the feasibility of active drawbeads in sheet metal forming.
This study focuses on the establishment of active drawbeads design process. Because Baushinger effect is much stronger in AHSS than in low strength steels, this study investigates the difference between physical drawbeads and equivalent drawbeads in CAE simulation. According to the simulation results, physical drawbeads can correctly take Baushinger effect into account in stamping. This study also investigates the effect of geometric parameters of drawbeads on sidewall curl.
In addition, this study investigates the effect of parameters of round bead on sidewall curl and thinning. By studying the contact forces among punch, mold and drawbeads during stamping process, this study establishes a design process of active drawbeads. It shows that sidewall curl can be significantly diminished. Radiuses of sidewall curl of NUMISHEET 2011 benchmark 4 are higher than 1000mm in 780Y, 980Y, 1180Y by using active drawbeads without cracking.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:39:10Z (GMT). No. of bitstreams: 1
ntu-105-R03522706-1.pdf: 4261471 bytes, checksum: 34932fb97c9cecd528b4123e0c1dfb6a (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents目錄 I
圖目錄 IV
表目錄 IX
第一章 緒論 1
1.1前言 1
1.2研究動機與目的 4
1.3文獻回顧 8
1.4研究方法與步驟 10
1.5論文總覽 11
第二章 阻料條種類及其作用原理之探討 12
2.1阻料條簡介 12
2.1.1阻料條基本結構 13
2.1.2阻料條作用原理 15
2.1.3阻料條之功能 17
2.1.4阻料條設置基本原則 18
2.2收斂性測試 20
2.2.1板材網格大小 22
2.2.2積分點數目 23
2.2.3沖壓速度 24
2.2.4圓角處網格數目 25
2.2.5收斂性測試結果 26
2.3真實阻料條與等效阻料條之比較 26
2.3.1真實阻料條與等效阻料條之優缺點 27
2.3.2使用阻料條時之包辛格效應 29
2.3.3包辛格效應之影響 32
第三章 阻料條造型參數之探討 34
3.1常見阻料條及其參數 34
3.1.1半圓形阻料條 35
3.1.1.1Bead圓角 36
3.1.1.2 Bead高度 37
3.1.1.3 Shoulder圓角半徑 38
3.1.1.4 Groove寬 39
3.1.1.5結果討論 40
3.1.2階梯形阻料條 41
3.1.2.1圓角半徑R1、R2 42
3.1.2.2阻料條高度D 43
3.1.2.3阻料條間隙G 44
3.1.2.4結果討論 45
3.1.3方形阻料條 46
3.1.3.1 Bead高度D 47
3.1.3.2 Bead圓角R1與Groove圓角R2 48
3.1.3.3 Bead寬L1與Groove寬L2 50
3.1.4不同阻料條之比較 52
3.2阻料條設置方式比較 54
3.2.1阻料條設置於母模或壓料板 55
3.2.2阻料條距模穴距離對側壁捲曲之影響 58
3.3本章小節 63
第四章 可調式阻料條設計之探討 64
4.1阻料條高度變化 64
4.2可調式阻料條設置於母模及壓料板之差異探討 69
4.2.1可調式阻料條設置於母模及壓料板側壁捲曲之比較 70
4.2.2模具受力分析之比較 74
4.3可調式阻料條之作用時機及極限高度 78
4.3.1可調式阻料條作用時機探討 79
4.3.2可調式阻料條極限高度 83
4.3.3不同壓料力下之阻料條極限高度 87
4.3.4不同阻料條與模穴距離之極限高度 89
4.3.5阻料條極限高度流程於980、1180級高強度鋼 91
4.4本章小結 94
第五章 可調式阻料條機構之設計 95
5.1可調式阻料條各部件及組裝程序簡介 95
5.2可調式阻料條機構之作用原理 98
第六章 結論與未來展望 101
6.1結論 101
6.2未來展望 102
參考文獻 103
dc.language.isozh-TW
dc.subject可調式阻料條zh_TW
dc.subject先進高強度鋼板zh_TW
dc.subject側壁捲曲zh_TW
dc.subject有限元素法分析zh_TW
dc.subject先進高強度鋼板zh_TW
dc.subject側壁捲曲zh_TW
dc.subject有限元素法分析zh_TW
dc.subject可調式阻料條zh_TW
dc.subjectsidewall curlen
dc.subjectadvanced high strength steelen
dc.subjectactive drawbeaden
dc.subjectfinite element analysisen
dc.subjectsidewall curlen
dc.subjectadvanced high strength steelen
dc.subjectactive drawbeaden
dc.subjectfinite element analysisen
dc.title可調式阻料條改善側壁捲曲之研究zh_TW
dc.titleSidewall Curl Reduction Using Active Drawbeaden
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳復國,楊宏智,郭俊良
dc.subject.keyword先進高強度鋼板,側壁捲曲,有限元素法分析,可調式阻料條,zh_TW
dc.subject.keywordadvanced high strength steel,sidewall curl,finite element analysis,active drawbead,en
dc.relation.page105
dc.identifier.doi10.6342/NTU201600378
dc.rights.note有償授權
dc.date.accepted2016-07-28
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
Appears in Collections:機械工程學系

Files in This Item:
File SizeFormat 
ntu-105-1.pdf
  Restricted Access
4.16 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved