請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50394完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 趙本秀(Pen-Hsiu Chao) | |
| dc.contributor.author | Shun-Hao Tsao | en |
| dc.contributor.author | 曹舜皓 | zh_TW |
| dc.date.accessioned | 2021-06-15T12:38:58Z | - |
| dc.date.available | 2016-08-03 | |
| dc.date.copyright | 2016-08-03 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2016-07-28 | |
| dc.identifier.citation | [1] McCaig CD, Zhao M. Physiological Electrical Fields Modify Cell Behaviour. Cell and Molecular Biology. 1997;19:819-26.
[2] Guo A, Song B, Reid B, Gu Y, Forrester JV, Jahoda CA, et al. Effects of Physiological Electric Fields on Migration of Human Dermal Fibroblasts. The Journal of investigative dermatology. 2010;130:2320-7. [3] Chao P-hG, Lu HH, Hung CT, Nicoll SB, Bulinski JC. Effects of Applied DC Electric Field on Ligament Fibroblast Migration andWound Healing. Connective Tissue Research. 2007;48:188–97. [4] Sun YS, Peng SW, Cheng JY. In vitro Electrical-Stimulated Wound-Healing Chip for Studying Electric Field-Assisted Wound-Healing Process. Biomicrofluidics. 2012;6:34117. [5] Song B, Zhao M, Forrester J, McCaig C. Nerve Regeneration and Wound Healing Are Stimulated and Directed by an Endogenous Electrical Field in vivo. Journal of Cell Science. 2004;117:4681-90. [6] Zhao M. Electrical fields inwound healing—An overriding signal that directs cell migration. Seminars in Cell & Developmental Biology. 2009;20: 674–82. [7] Zhao M, Song B, Pu J, Wada T, Reid B, Tai G, et al. Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-gamma and PTEN. Nature. 2006;442:457-60. [8] Allen GM, Mogilner A, Theriot JA. Electrophoresis of Cellular Membrane Components Creates the Directional Cue Guiding Keratocyte Galvanotaxis. Current Biology. 2013;23:560-8. [9] MR C, HS T, RC L, DE G. Induced redistribution of cell surface receptors by alternating current electric fields. The FASEB Journal. 1994;8:771-6. [10] Zhao M, Pu J, Forrester JV, McCaig CD. Membrane lipids, EGF receptors, and intracellular signals colocalize and are polarized in epithelial cells moving directionally in a physiological electric field. The FASEB Journal. 2002. [11] Lin BJ, Chao PH. Electric Field-induced Lipid Raft Polarization Guide Fibroblast Directional Migration. Orthopaedic Research Society2013. [12] Pike LJ. Rafts defined: a report on the Keystone symposium on lipid rafts and cell function. The Journal of Lipid Research. 2006;47:1597-8. [13] Hernandez-Deviez DJ, Howes MT, Laval SH, Bushby K, Hancock JF, Parton RG. Caveolin regulates endocytosis of the muscle repair protein, dysferlin. Journal of Biological Chemistry. 2008;283:6476-88. [14] Wickström SA, Fässler R. Regulation of membrane traffic by integrin signaling. Trends in Cell Biology. 2011;21:266-73. [15] Sotobori T, Ueda T, Myoui A, Yoshioka K, Nakasaki M, Yoshikawa H, et al. Bone morphogenetic protein-2 promotes the haptotactic migration of murine osteoblastic and osteosarcoma cells by enhancing incorporation of integrin beta1 into lipid rafts. Exp Cell Res. 2006;312:3927-38. [16] Kusumi A, Suzuki K. Toward understanding the dynamics of membrane-raft-based molecular interactions. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 2005;1746:234-51. [17] Tsai CH, Lin BJ, Chao PH. Alpha2beta1 Integrin and RhoA Mediates Electric Field-Induced Ligament Fibroblast Migration Directionality. Journal of orthopaedic research. 2013;31:322-7. [18] Jasmin J-F, Frank PG, Lisanti MP. Caveolins and Caveolae: Roles in Signaling and Disease Mechanisms, in CAVEOLIN-1: Role in Cell Signaling. Cécile Boscher, IRN. 2012. [19] Yang B, Radel C, Hughes D, Kelemen S, Rizzo V. p190 RhoGTPase-Activating Protein Links the 1 Integrin/Caveolin-1 Mechanosignaling Complex to RhoA and Actin Remodeling. Arteriosclerosis, Thrombosis, and Vascular Biology. 2010;31:376-83. [20] Rey-Barroso J, Colo GP, Alvarez-Barrientos A, Redondo-Muñoz J, Carvajal-González JM, Mulero-Navarro S, et al. The dioxin receptor controls β1 integrin activation in fibroblasts through a Cbp–Csk–Src pathway. Cellular Signalling. 2013;25:848-59. [21] Beardsley A, Fang K, Mertz H, Castranova V, Friend S, Liu J. Loss of caveolin-1 polarity impedes endothelial cell polarization and directional movement. The Journal of biological chemistry. 2005;280:3541-7. [22] Arpaia E, Blaser H, Quintela-Fandino M, Duncan G, Leong HS, Ablack A, et al. The interaction between caveolin-1 and Rho-GTPases promotes metastasis by controlling the expression of alpha5-integrin and the activation of Src, Ras and Erk. Oncogene. 2012;31:884-96. [23] Grande-Garcia A, Echarri A, de Rooij J, Alderson NB, Waterman-Storer CM, Valdivielso JM, et al. Caveolin-1 regulates cell polarization and directional migration through Src kinase and Rho GTPases. The Journal of cell biology. 2007;177:683-94. [24] Han J, Yan XL, Han QH, Li YJ, Du ZJ, Hui YN. Integrin beta1 subunit signaling is involved in the directed migration of human retinal pigment epithelial cells following electric field stimulation. Ophthalmic research. 2011;45:15-22. [25] Allen Greg M, Mogilner A, Theriot Julie A. Electrophoresis of Cellular Membrane Components Creates the Directional Cue Guiding Keratocyte Galvanotaxis. Current Biology. 2013. [26] Jonathan D. Humphries AB, Martin J. Humphries. Integrin ligands at a glance. Journal of Cell Science. 2006;119:3901-3. [27] Palazzo AF, Eng CH, Schlaepfer DD, Marcantonio EE, Gundersen GG. Localized Stabilization of Microtubules by Integrin- and FAK-Facilitated Rho Signaling. Science. 2004;303:836-9. [28] Chang C-H, Lin H-Y, Fang H-W, Loo S-T, Hung S-C, Ho Y-C, et al. Chondrogenesis From Immortalized Human Mesenchymal Stem Cells: Comparison Between Collagen Gel and Pellet Culture Methods. Artificial Organs. 2008;32:561-71. [29] Danthi P, Chow M. Cholesterol Removal by Methyl-beta-Cyclodextrin Inhibits Poliovirus Entry. JOURNAL OF VIROLOGY. 2003;78:33-41. [30] Carmena MJ, Hueso C, Guijarro LG, Prieto JC. Cholesterol modulation of membrane fluidity and VIP receptor/effector system in rat prostatic epithelial cells. Regulatory peptides. 1991;33:287-97. [31] Tsai H-F, Huang C-W, Chang H-F, Chen JJW, Lee C-H, Cheng J-Y. Evaluation of EGFR and RTK Signaling in the Electrotaxis of Lung Adenocarcinoma Cells under Direct-Current Electric Field Stimulation. plosone. 2013;8:1-20. [32] Simard JR, Meshulam T, Pillai BK, Kirber MT, Brunaldi K, Xu S, et al. Caveolins sequester FA on the cytoplasmic leaflet of the plasma membrane, augment triglyceride formation, and protect cells from lipotoxicity. The Journal of Lipid Research. 2009;51:914-22. [33] Lei J, Ingbar DH. Src kinase integrates PI3K/Akt and MAPK/ERK1/2 pathways in T3-induced Na-K-ATPase activity in adult rat alveolar cells. Am J Physiol Lung Cell Mol Physiol. 2011;301:765-71. [34] Walker VG, Ammer A, Cao Z, Clump AC, Jiang B-H, Kelley LC, et al. PI3K activation is required for PMA-directed activation of cSrc by AFAP-110. Am J Physiol Cell Physiol. 2007;293:C119–C32. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50394 | - |
| dc.description.abstract | 電趨性為細胞受到電場影響而表現出與電場方向平行移動的現象。先前的研究指出脂膜筏──一種細胞膜上的微結構──藉由調控integrin或是caveolin-1影響細胞的移動方向。也發現細胞在交流電及直流電中有相反方向的移動。本研究指出脂膜筏僅會在低頻率的交流電中有方向性的移動,且在具有不同方向移動表現型的細胞中,脂膜筏在細胞中的偏向也有不同。且脂膜筏及caveolin-1皆可藉由改變在細胞中的偏向來調控Src 在細胞中的偏向來引導細胞在電場中移動的方向。我們也發現PI3K以藉由改變Src 在細胞中的偏向參與其中。這些結果提供的兩種面向探討脂膜筏如何改變細胞的方向性:脂膜筏在細胞膜表面上的移動方向,以及其下游的傳導途徑。 | zh_TW |
| dc.description.abstract | Galvanotaxis is a phenomenon where cell migration directed by electric fields (EFs). Previous studies revealed that the redistribution of lipid raft guides cell directional motility by regulating integrin or caveolin-1, and cells has opposite directionality between AC and DC. This study indicates that lipid raft can be polarized under in 50Hz of alternative current, and the redistribution of lipid raft can be different in different migration phenotype cells. Lipid raft and caveolin-1 polarization can guide cell directional migration in EF by redistribute Src polarization. PI3K also involved in the pathway by affecting Src polarization. These results clarified how lipid raft polarization change cell migration in EF in two aspects: the position lipid rafts distribute in different situations, and the downstream pathways. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T12:38:58Z (GMT). No. of bitstreams: 1 ntu-104-R02548059-1.pdf: 1143003 bytes, checksum: 7a9b1c1c54404683a33127a970252b07 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 口試委員審定書 I
摘要 II Abstract III List of Figures VI List of Tables VIII Chapter 1 Introduction 1 Chapter 2 Materials and Methods 4 2.1 Cell Culture 4 2.1.1 Primary Porcine Fibroblasts Culture 4 2.1.2 Human Mesenchymal Stem Cells Culture 4 2.1.3 Human Lung Adenocarcinoma Cells Culture 4 2.1.4 Electric Field Stimulation Studies 5 2.2 RNA interference 5 2.4 Pharmacological Treatment 6 2.4.1 Cholesterol Depletion 6 2.4.2 Src inhibition 6 2.4.3 PI3K inhibition 6 2.4.4 Actin disruption 6 2.4.5 RhoA inhibition 6 2.5 Electric field stimulation 6 2.6 Fibroblast Behavior Quantification 7 2.7 Lipid Raft Labeling 7 2.8 Immunofluorescence staining 7 2.9 Fluorescent Image Analysis 8 2.10 Statistics 9 Chapter 3 Results 10 3.1 Lipid raft can be polarized in low frequency Alternative Current 10 3.2 Lipid raft redistribution differs in different migration phenotype cells 10 3.3 Actin deconstruction has small effect on polarization of lipid raft and downstream elements 11 3.4 Lipid Raft Polarization Guide Fibroblast Directional Migration in Electric Fields via RhoA 11 3.5 Role of caveolin, PI3K and Src in electric field-induced directed cell migration 12 Chapter 4 Discussion 14 Reference 35 | |
| dc.language.iso | en | |
| dc.subject | Src | zh_TW |
| dc.subject | 細胞移動 | zh_TW |
| dc.subject | 脂膜筏 | zh_TW |
| dc.subject | PI3K | zh_TW |
| dc.subject | PI3K | zh_TW |
| dc.subject | 電場 | zh_TW |
| dc.subject | 脂膜筏 | zh_TW |
| dc.subject | 細胞移動 | zh_TW |
| dc.subject | 電場 | zh_TW |
| dc.subject | 趨電性 | zh_TW |
| dc.subject | Src | zh_TW |
| dc.subject | 趨電性 | zh_TW |
| dc.subject | electric field | en |
| dc.subject | migration | en |
| dc.subject | PI3K | en |
| dc.subject | lipid raft | en |
| dc.subject | galvanotaxis | en |
| dc.subject | Src | en |
| dc.title | 脂膜筏及Caveolin藉由Src引導纖維母細胞於電場中之方向性移動 | zh_TW |
| dc.title | Lipid Raft and Caveolin Polarization Guide Fibroblast Directional Migration in Electric Fields via Src | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 郭柏齡(Po-Ling Kuo),沈湯龍(Tang-Long Shen),趙遠宏(Yuan-Hung Chao) | |
| dc.subject.keyword | 脂膜筏,細胞移動,電場,趨電性,Src,PI3K, | zh_TW |
| dc.subject.keyword | lipid raft,migration,electric field,galvanotaxis,Src,PI3K, | en |
| dc.relation.page | 40 | |
| dc.identifier.doi | 10.6342/NTU201601388 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-07-29 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 1.12 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
