Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 微生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50383
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳小梨
dc.contributor.authorYi-Rou Linen
dc.contributor.author林怡柔zh_TW
dc.date.accessioned2021-06-15T12:38:33Z-
dc.date.available2018-08-26
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-07-29
dc.identifier.citation1. Maass, N., et al., Amplification of the BCAS2 gene at chromosome 1p13.3-21 in human primary breast cancer. Cancer Lett, 2002. 185(2): p. 219-23.
2. Nagasaki, K., et al., Identification of a novel gene, DAM1, amplified at chromosome 1p13.3-21 region in human breast cancer cell lines. Cancer Lett, 1999. 140(1-2): p. 219-26.
3. Qi, C., et al., Potentiation of estrogen receptor transcriptional activity by breast cancer amplified sequence 2. Biochem Biophys Res Commun, 2005. 328(2): p. 393-8.
4. Sengupta, D., et al., ERRbeta signalling through FST and BCAS2 inhibits cellular proliferation in breast cancer cells. Br J Cancer, 2014. 110(8): p. 2144-58.
5. Kuo, P.C., et al., Breast cancer amplified sequence 2, a novel negative regulator of the p53 tumor suppressor. Cancer Res, 2009. 69(23): p. 8877-85.
6. Kuo, P.C., et al., BCAS2 promotes prostate cancer cells proliferation by enhancing AR mRNA transcription and protein stability. Br J Cancer, 2015. 112(2): p. 391-402.
7. Wan, L. and J. Huang, The PSO4 protein complex associates with replication protein A (RPA) and modulates the activation of ataxia telangiectasia-mutated and Rad3-related (ATR). J Biol Chem, 2014. 289(10): p. 6619-26.
8. Mahajan, K.N. and B.S. Mitchell, Role of human Pso4 in mammalian DNA repair and association with terminal deoxynucleotidyl transferase. Proc Natl Acad Sci U S A, 2003. 100(19): p. 10746-51.
9. Xu, Q., et al., Maternal BCAS2 protects genomic integrity in mouse early embryonic development. Development, 2015. 142(22): p. 3943-53.
10. Neubauer, G., et al., Mass spectrometry and EST-database searching allows characterization of the multi-protein spliceosome complex. Nat Genet, 1998. 20(1): p. 46-50.
11. Ajuh, P., et al., Functional analysis of the human CDC5L complex and identification of its components by mass spectrometry. EMBO J, 2000. 19(23): p. 6569-81.
12. Grote, M., et al., Molecular architecture of the human Prp19/CDC5L complex. Mol Cell Biol, 2010. 30(9): p. 2105-19.
13. Ohi, M.D. and K.L. Gould, Characterization of interactions among the Cef1p-Prp19p-associated splicing complex. RNA, 2002. 8(6): p. 798-815.
14. Ohi, M.D., et al., Proteomics analysis reveals stable multiprotein complexes in both fission and budding yeasts containing Myb-related Cdc5p/Cef1p, novel pre-mRNA splicing factors, and snRNAs. Mol Cell Biol, 2002. 22(7): p. 2011-24.
15. Ohi, M.D., et al., Structural and functional analysis of essential pre-mRNA splicing factor Prp19p. Mol Cell Biol, 2005. 25(1): p. 451-60.
16. Chan, S.P. and S.C. Cheng, The Prp19-associated complex is required for specifying interactions of U5 and U6 with pre-mRNA during spliceosome activation. J Biol Chem, 2005. 280(35): p. 31190-9.
17. Chan, S.P., et al., The Prp19p-associated complex in spliceosome activation. Science, 2003. 302(5643): p. 279-82.
18. Hofmann, J.C., et al., The Prp19 complex directly functions in mitotic spindle assembly. PLoS One, 2013. 8(9): p. e74851.
19. Chen, P.H., et al., BCAS2 is essential for Drosophila viability and functions in pre-mRNA splicing. RNA, 2013. 19(2): p. 208-18.
20. Chou, M.H., et al., BCAS2 Regulates Delta-Notch Signaling Activity through Delta Pre-mRNA Splicing in Drosophila Wing Development. PLoS One, 2015. 10(6): p. e0130706.
21. Liao, S., et al., BCAS2 interacts with HSF4 and negatively regulates its protein stability via ubiquitination. Int J Biochem Cell Biol, 2015. 68: p. 78-86.
22. Huang, C.-W., et al., Conditional Knockout of Breast Carcinoma Amplified Sequence 2 (BCAS2) in Mouse Forebrain Causes Dendritic Malformation via β-catenin. Scientific Reports, 2016. (under revision)
23. Cadigan, K.M. and Y.I. Liu, Wnt signaling: complexity at the surface. J Cell Sci, 2006. 119(Pt 3): p. 395-402.
24. Huang, H. and X. He, Wnt/beta-catenin signaling: new (and old) players and new insights. Curr Opin Cell Biol, 2008. 20(2): p. 119-25.
25. Stadeli, R., R. Hoffmans, and K. Basler, Transcription under the control of nuclear Arm/beta-catenin. Curr Biol, 2006. 16(10): p. R378-85.
26. De Ferrari, G.V. and N.C. Inestrosa, Wnt signaling function in Alzheimer's disease. Brain Res Brain Res Rev, 2000. 33(1): p. 1-12.
27. De Ferrari, G.V. and R.T. Moon, The ups and downs of Wnt signaling in prevalent neurological disorders. Oncogene, 2006. 25(57): p. 7545-53.
28. Lovestone, S., et al., Schizophrenia as a GSK-3 dysregulation disorder. Trends Neurosci, 2007. 30(4): p. 142-9.
29. He, P. and Y. Shen, Interruption of beta-catenin signaling reduces neurogenesis in Alzheimer's disease. J Neurosci, 2009. 29(20): p. 6545-57.
30. Selkoe, D.J., Alzheimer's disease: genes, proteins, and therapy. Physiol Rev, 2001. 81(2): p. 741-66.
31. De Ferrari, G.V., et al., Activation of Wnt signaling rescues neurodegeneration and behavioral impairments induced by beta-amyloid fibrils. Mol Psychiatry, 2003. 8(2): p. 195-208.
32. Fuentealba, R.A., et al., Signal transduction during amyloid-beta-peptide neurotoxicity: role in Alzheimer disease. Brain Res Brain Res Rev, 2004. 47(1-3): p. 275-89.
33. Zhang, Z., et al., Destabilization of beta-catenin by mutations in presenilin-1 potentiates neuronal apoptosis. Nature, 1998. 395(6703): p. 698-702.
34. Lucas, J.J., et al., Decreased nuclear beta-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3beta conditional transgenic mice. EMBO J, 2001. 20(1-2): p. 27-39.
35. Hernandez, F., et al., Spatial learning deficit in transgenic mice that conditionally over-express GSK-3beta in the brain but do not form tau filaments. J Neurochem, 2002. 83(6): p. 1529-33.
36. Burda, J.E. and M.V. Sofroniew, Reactive gliosis and the multicellular response to CNS damage and disease. Neuron, 2014. 81(2): p. 229-48.
37. McMillian, M.K., et al., Brain injury in a dish: a model for reactive gliosis. Trends Neurosci, 1994. 17(4): p. 138-42.
38. Lull, M.E. and M.L. Block, Microglial activation and chronic neurodegeneration. Neurotherapeutics, 2010. 7(4): p. 354-65.
39. Lefterov, I., et al., Expression profiling in APP23 mouse brain: inhibition of Abeta amyloidosis and inflammation in response to LXR agonist treatment. Mol Neurodegener, 2007. 2: p. 20.
40. Hickman, S.E., E.K. Allison, and J. El Khoury, Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer's disease mice. J Neurosci, 2008. 28(33): p. 8354-60.
41. El Khoury, J., et al., Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat Med, 2007. 13(4): p. 432-8.
42. El Khoury, J. and A.D. Luster, Mechanisms of microglia accumulation in Alzheimer's disease: therapeutic implications. Trends Pharmacol Sci, 2008. 29(12): p. 626-32.
43. Block, M.L., L. Zecca, and J.S. Hong, Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci, 2007. 8(1): p. 57-69.
44. Block, M.L. and J.S. Hong, Chronic microglial activation and progressive dopaminergic neurotoxicity. Biochem Soc Trans, 2007. 35(Pt 5): p. 1127-32.
45. Forlenza, O.V., V.J. De-Paula, and B.S. Diniz, Neuroprotective effects of lithium: implications for the treatment of Alzheimer's disease and related neurodegenerative disorders. ACS Chem Neurosci, 2014. 5(6): p. 443-50.
46. Toledo, E.M. and N.C. Inestrosa, Activation of Wnt signaling by lithium and rosiglitazone reduced spatial memory impairment and neurodegeneration in brains of an APPswe/PSEN1DeltaE9 mouse model of Alzheimer's disease. Mol Psychiatry, 2010. 15(3): p. 272-85, 228.
47. Contestabile, A., et al., Lithium rescues synaptic plasticity and memory in Down syndrome mice. J Clin Invest, 2013. 123(1): p. 348-61.
48. Wood, N.I. and A.J. Morton, Chronic lithium chloride treatment has variable effects on motor behaviour and survival of mice transgenic for the Huntington's disease mutation. Brain Res Bull, 2003. 61(4): p. 375-83.
49. Yan, X.B., et al., Lithium regulates hippocampal neurogenesis by ERK pathway and facilitates recovery of spatial learning and memory in rats after transient global cerebral ischemia. Neuropharmacology, 2007. 53(4): p. 487-95.
50. Li, Q., et al., Lithium reduces apoptosis and autophagy after neonatal hypoxia-ischemia. Cell Death Dis, 2010. 1: p. e56.
51. Su, H., T.H. Chu, and W. Wu, Lithium enhances proliferation and neuronal differentiation of neural progenitor cells in vitro and after transplantation into the adult rat spinal cord. Exp Neurol, 2007. 206(2): p. 296-307.
52. Chen, G., et al., Enhancement of hippocampal neurogenesis by lithium. J Neurochem, 2000. 75(4): p. 1729-34.
53. Son, H., et al., Lithium enhances long-term potentiation independently of hippocampal neurogenesis in the rat dentate gyrus. J Neurochem, 2003. 85(4): p. 872-81.
54. Kim, J.S., et al., Lithium selectively increases neuronal differentiation of hippocampal neural progenitor cells both in vitro and in vivo. J Neurochem, 2004. 89(2): p. 324-36.
55. Wexler, E.M., D.H. Geschwind, and T.D. Palmer, Lithium regulates adult hippocampal progenitor development through canonical Wnt pathway activation. Mol Psychiatry, 2008. 13(3): p. 285-92.
56. Ryves, W.J. and A.J. Harwood, Lithium inhibits glycogen synthase kinase-3 by competition for magnesium. Biochem Biophys Res Commun, 2001. 280(3): p. 720-5.
57. Zhang, F., et al., Inhibitory phosphorylation of glycogen synthase kinase-3 (GSK-3) in response to lithium. Evidence for autoregulation of GSK-3. J Biol Chem, 2003. 278(35): p. 33067-77.
58. Lie, D.C., et al., Wnt signalling regulates adult hippocampal neurogenesis. Nature, 2005. 437(7063): p. 1370-5.
59. Gao, X., et al., Conditional knock-out of beta-catenin in postnatal-born dentate gyrus granule neurons results in dendritic malformation. J Neurosci, 2007. 27(52): p. 14317-25.
60. Adachi, K., et al., Beta-catenin signaling promotes proliferation of progenitor cells in the adult mouse subventricular zone. Stem Cells, 2007. 25(11): p. 2827-36.
61. Qu, Q., et al., Orphan nuclear receptor TLX activates Wnt/beta-catenin signalling to stimulate neural stem cell proliferation and self-renewal. Nat Cell Biol, 2010. 12(1): p. 31-40; sup pp 1-9.
62. Fiorentini, A., et al., Lithium improves hippocampal neurogenesis, neuropathology and cognitive functions in APP mutant mice. PLoS One, 2010. 5(12): p. e14382.
63. Su, H., et al., Lithium enhances the neuronal differentiation of neural progenitor cells in vitro and after transplantation into the avulsed ventral horn of adult rats through the secretion of brain-derived neurotrophic factor. J Neurochem, 2009. 108(6): p. 1385-98.
64. Urano, Y., et al., Involvement of the mouse Prp19 gene in neuronal/astroglial cell fate decisions. J Biol Chem, 2006. 281(11): p. 7498-514.
65. Blalock, E.M., et al., Incipient Alzheimer's disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses. Proc Natl Acad Sci U S A, 2004. 101(7): p. 2173-8.
66. Xia, K., et al., Common genetic variants on 1p13.2 associate with risk of autism. Mol Psychiatry, 2014. 19(11): p. 1212-9.
67. Winner, B. and J. Winkler, Adult neurogenesis in neurodegenerative diseases. Cold Spring Harb Perspect Biol, 2015. 7(4): p. a021287.
68. Kempermann, G., H. Song, and F.H. Gage, Neurogenesis in the Adult Hippocampus. Cold Spring Harb Perspect Biol, 2015. 7(9): p. a018812.
69. Lie, D.C., et al., Neurogenesis in the adult brain: new strategies for central nervous system diseases. Annu Rev Pharmacol Toxicol, 2004. 44: p. 399-421.
70. Alvarez-Buylla, A. and D.A. Lim, For the long run: maintaining germinal niches in the adult brain. Neuron, 2004. 41(5): p. 683-6.
71. Hsieh, J., Orchestrating transcriptional control of adult neurogenesis. Genes Dev, 2012. 26(10): p. 1010-21.
72. Clevers, H. and R. Nusse, Wnt/beta-catenin signaling and disease. Cell, 2012. 149(6): p. 1192-205.
73. Hotulainen, P. and C.C. Hoogenraad, Actin in dendritic spines: connecting dynamics to function. J Cell Biol, 2010. 189(4): p. 619-29.
74. Chen, H.H., et al., hnRNP Q regulates Cdc42-mediated neuronal morphogenesis. Mol Cell Biol, 2012. 32(12): p. 2224-38.
75. Mattila, P.K. and P. Lappalainen, Filopodia: molecular architecture and cellular functions. Nat Rev Mol Cell Biol, 2008. 9(6): p. 446-54.
76. Kasai, H., et al., Structural dynamics of dendritic spines in memory and cognition. Trends Neurosci, 2010. 33(3): p. 121-9.
77. Machado-Vieira, R., H.K. Manji, and C.A. Zarate, Jr., The role of lithium in the treatment of bipolar disorder: convergent evidence for neurotrophic effects as a unifying hypothesis. Bipolar Disord, 2009. 11 Suppl 2: p. 92-109.
78. Geddes, J.R. and D.J. Miklowitz, Treatment of bipolar disorder. Lancet, 2013. 381(9878): p. 1672-82.
79. Biscaro, B., et al., Inhibition of microglial activation protects hippocampal neurogenesis and improves cognitive deficits in a transgenic mouse model for Alzheimer's disease. Neurodegener Dis, 2012. 9(4): p. 187-98.
80. Bondolfi, L., et al., Amyloid-associated neuron loss and gliogenesis in the neocortex of amyloid precursor protein transgenic mice. J Neurosci, 2002. 22(2): p. 515-22.
81. Marlatt, M.W., et al., Proliferation in the Alzheimer hippocampus is due to microglia, not astroglia, and occurs at sites of amyloid deposition. Neural Plast, 2014. 2014: p. 693851.
82. Streit, W.J., Microglial activation and neuroinflammation in Alzheimer's disease: a critical examination of recent history. Front Aging Neurosci, 2010. 2: p. 22.
83. Dheen, S.T., C. Kaur, and E.A. Ling, Microglial activation and its implications in the brain diseases. Curr Med Chem, 2007. 14(11): p. 1189-97.
84. Huo, K., et al., Lithium reduced neural progenitor apoptosis in the hippocampus and ameliorated functional deficits after irradiation to the immature mouse brain. Mol Cell Neurosci, 2012. 51(1-2): p. 32-42.
85. Li, H., et al., Lithium-mediated long-term neuroprotection in neonatal rat hypoxia-ischemia is associated with antiinflammatory effects and enhanced proliferation and survival of neural stem/progenitor cells. J Cereb Blood Flow Metab, 2011. 31(10): p. 2106-15.
86. Sofroniew, M.V. and H.V. Vinters, Astrocytes: biology and pathology. Acta Neuropathol, 2010. 119(1): p. 7-35.
87. Dragatsis, I. and S. Zeitlin, CaMKIIalpha-Cre transgene expression and recombination patterns in the mouse brain. Genesis, 2000. 26(2): p. 133-5.
88. Casanova, E., et al., A CamKIIalpha iCre BAC allows brain-specific gene inactivation. Genesis, 2001. 31(1): p. 37-42.
89. Arruda-Carvalho, M., et al., Conditional deletion of alpha-CaMKII impairs integration of adult-generated granule cells into dentate gyrus circuits and hippocampus-dependent learning. J Neurosci, 2014. 34(36): p. 11919-28.
90. Kara, N., et al., Chronic Lithium Treatment Enhances the Number of Quiescent Neural Progenitors but Not the Number of DCX-Positive Immature Neurons. Int J Neuropsychopharmacol, 2015. 18(7): p. pyv003.
91. Coghlan, M.P., et al., Selective small molecule inhibitors of glycogen synthase kinase-3 modulate glycogen metabolism and gene transcription. Chem Biol, 2000. 7(10): p. 793-803.
92. Rohl, C., R. Lucius, and J. Sievers, The effect of activated microglia on astrogliosis parameters in astrocyte cultures. Brain Res, 2007. 1129(1): p. 43-52.
93. Zhang, D., et al., Astrogliosis in CNS pathologies: is there a role for microglia? Mol Neurobiol, 2010. 41(2-3): p. 232-41.
94. Balasingam, V., et al., Astrocyte reactivity in neonatal mice: apparent dependence on the presence of reactive microglia/macrophages. Glia, 1996. 18(1): p. 11-26.
95. Mayford, M., S.A. Siegelbaum, and E.R. Kandel, Synapses and memory storage. Cold Spring Harb Perspect Biol, 2012. 4(6).
96. Xiao, M., et al., Impaired hippocampal synaptic transmission and plasticity in mice lacking fibroblast growth factor 14. Mol Cell Neurosci, 2007. 34(3): p. 366-77.
97. Ziehn, M.O., et al., Therapeutic testosterone administration preserves excitatory synaptic transmission in the hippocampus during autoimmune demyelinating disease. J Neurosci, 2012. 32(36): p. 12312-24.
98. Martinez, A., et al., Glycogen synthase kinase 3 (GSK-3) inhibitors as new promising drugs for diabetes, neurodegeneration, cancer, and inflammation. Med Res Rev, 2002. 22(4): p. 373-84.
99. Yuskaitis, C.J. and R.S. Jope, Glycogen synthase kinase-3 regulates microglial migration, inflammation, and inflammation-induced neurotoxicity. Cell Signal, 2009. 21(2): p. 264-73.
100. Gomez-Sintes, R. and J.J. Lucas, NFAT/Fas signaling mediates the neuronal apoptosis and motor side effects of GSK-3 inhibition in a mouse model of lithium therapy. J Clin Invest, 2010. 120(7): p. 2432-45.
101. Miodownik, C., E. Witztum, and V. Lerner, Lithium-induced tremor treated with vitamin B6: a preliminary case series. Int J Psychiatry Med, 2002. 32(1): p. 103-8.
102. Rockenstein, E., et al., Neuroprotective effects of regulators of the glycogen synthase kinase-3beta signaling pathway in a transgenic model of Alzheimer's disease are associated with reduced amyloid precursor protein phosphorylation. J Neurosci, 2007. 27(8): p. 1981-91.
103. Doetsch, F., A niche for adult neural stem cells. Curr Opin Genet Dev, 2003. 13(5): p. 543-50.
104. Lee, C., et al., The molecular profiles of neural stem cell niche in the adult subventricular zone. PLoS One, 2012. 7(11): p. e50501.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50383-
dc.description.abstractBCAS2是一個26 kD的核蛋白,為p53的負調控者進而影響細胞生長。此外,BCAS2透過增加雄激素受體mRNA的表現量和維持蛋白質的穩定性來促進前列腺癌細胞細胞增生。BCAS2參與形成Prp19/CDC5L complex,調控活化核醣核酸的剪切。BCAS2透過調控Delta pre-mRNA剪切去影響果蠅生存和翅膀發育。先前我們在外顯子微陣列分析指出β-catenin是BCAS2的目標基因,也證明 BCAS2是β-catenin剪切的正調控者。Wnt/β-catenin訊息傳遞路徑曾被報導在許多神經退化性疾病中受到阻礙。此外,近期文獻指出在微陣列分析中,阿茲海默症病患的BCAS2 RNA表現量下降;在涵蓋BCAS2的基因座位中的基因變異也和自閉症相關,暗示BCAS2參與神經新生。我們實驗室利用Cre/loxP系統在小鼠出生後,專一性剔除前腦BCAS2基因,造成前腦體積變小、樹突發育異常及學習和記憶能力下降,推測可能原因為β-catenin表現量下降。
在本篇研究中,我們探討是否可以透過提高β-catenin表現量來改善BCAS2條件式基因剔除小鼠的神經退化現象。鋰鹽已知透過抑制GSK-3β來活化Wnt/β-catenin訊息傳遞路徑,刺激神經細胞增生,故我們欲了解鋰鹽是否可以成為改善BCAS2條件式基因剔除小鼠的神經退化現象的治療物。首先,我們探討鋰鹽對細胞的影響,在分化的N2A細胞默化BCAS2,發現細胞的絲狀偽足(Filopodia)數目和β-catenin表現有減少現象。並在默化BCAS2同時外送β-catenin大量表現,發現絲狀偽足數目減少現象有明顯的回復。接著,探討鋰鹽是否可以改善BCAS2條件式基因剔除小鼠神經退化現象。經由小鼠前腦切片染色,發現在小鼠海馬迴中CA1的stratum radiatum和DG的 molecular layer有微膠細胞增生的現象但沒有星狀膠細胞增生現象,此結果暗示在小鼠前腦條件式基因剔除BCAS2會造成神經細胞的缺損。此外,也發現BCAS2條件式基因剔除小鼠有前腦體積變小,學習和記憶力衰退的現象。在進行行為實驗前,我們以open field test 和 visible platform tests確認條件式基因剔除小鼠的活動力和視力正常。經由小鼠行為實驗發現鋰鹽透過活化Wnt/β-catenin訊息傳遞路徑來提高β-catenin表現量,改善BCAS2條件式基因剔除小鼠的學習和記憶能力以及減緩DG的 molecular layer微膠細胞增生的現象。此結果暗示BCAS2透過調控β-catenin去影響小鼠學習和記憶能力。目前已有諸多文獻報導,Wnt/β-catenin訊息傳遞路徑會調控成體神經新生(adult neurogenesis)。在成體神經新生時,神經幹細胞會增生或分化成成熟的神經細胞,去執行學習或記憶。透過小鼠前腦切片染色發現條件式剔除BCAS2會造成神經幹細胞(SOX2)數目減少,並且锂鹽可以有效恢復條件式剔除小鼠的神經幹細胞數目。接著,以溴脫氧尿核苷(BrdU)標定新生細胞的結果也顯示,條件式基因剔除小鼠減少的增殖神經幹細胞(proliferating neural stem cells)可以透過锂鹽刺激而增加。故實驗結果顯示,BCAS2可以調控神經幹細胞的增殖和活化。近來有文獻報導指出CaMKII在神經幹細胞(Nestin)的表現量極少(約2%),而我們的BCAS2條件式剔除小鼠同樣式是透過CaMKII去驅動進行。透過小鼠前腦切片染色發現我們WT小鼠的CaMKII-Cre在神經幹細胞(SOX2)的表現量約3.3%。欲精確探討BCAS2對神經幹細胞或前驅細胞的影響,經由小鼠前腦切片以及Cre,SOX2和BrdU染色結果,更加確認我們的條件式基因剔除小鼠成功經由Cre/loxP系統剔除BCAS2基因進而導致神經幹細胞的增殖和活化能力下降。以上結果暗示鋰鹽透過活化Wnt/β-catenin訊息傳遞路徑來提高β-catenin表現量,進而改善BCAS2條件式基因剔除小鼠的學習和記憶能力並提高增殖神經幹細胞的數目。
zh_TW
dc.description.abstractBreast carcinoma amplified sequence 2 (BCAS2) is a 26 kD nuclear protein, a negative regulator of p53 and participates in cell growth regulation; and promotes prostate cancer cells proliferation by enhancing androgen receptor (AR) mRNA transcription and protein stability. BCAS2 is involved in Prp19/CDC5L spliceosome complex for regulation of RNA splicing and is essential for Drosophila viability and wing development by controlling Delta pre-mRNA splicing. Exon array analysis indicated that β-catenin was one of BCAS2-targeted gene. We currently proved that BCAS2 is up-regulator for β-catenin splicing. Disruption of Wnt/β-catenin signaling is involved in several neurodegenerative diseases such as Alzheimer’s disease (AD). Current report of other group demonstrated that the RNA expression of BCAS2 is reduced in the microarray analysis of AD patients. Also, genetic variant on BCAS2 gene linkage region (1p13.2) is associated with the risk of autism, indicating BCAS2 may be associate with neural related disorder. Recently, we used the Cre/loxP system driven by CaMKIIα to generate BCAS2 conditional knock out (cKO) in postnatal forebrain, which causes microcephaly-like, dendritic malformation, poor learning and memory phenotypes partly reasons from down-regulation of β-catenin.
In this study, we would investigate whether elevated β-catenin could rescue BCAS2 cKO causing neuron degeneration. Lithium, an inhibitor of glycogen synthase kinase-3β (GSK-3β), leads to the activation of the Wnt/β-catenin signaling pathway and an increase in β-catenin. Therefore, we were interested to investigate whether lithium can be a therapeutic agent for the depletion of BCAS2-causing neural defect. Firstly, we measured the effect of lithium in cells; knockdown of BCAS2 in differentiated N2A cell caused defect in filopodia formation along with the reduction of β-catenin. The overexpression of β-catenin could rescue impaired filopodia formation in silenced BCAS2 expression N2A cells. In sum, lithium treatment could increase β-catenin level along with increased numbers of filopodia in BCAS2 knockdown-differentiated N2A cells. Next, we examined whether lithium could rescue BCAS2 cKO causing neural degeneration. The reactive gliosis in cKO mice was measured and compared with WT mice. The selective microgliosis was found in the cornu ammonis1 stratum radiatum (CA1 Rad) and dentate gyrus molecular layer (DG Mo) but did not exhibit astrogliosis in cKO compared with WT mice, which confirmed depletion of BCAS2 in the forebrain caused neural defect. Additionally, BCAS2 cKO mice have small brains with impaired learning and memory abilities. The open field test and visible platform tests were conducted to ensure the mobility and visual acuity of cKO mice were comparable as WT. And lithium treatment to cKO mice could improve their spatial learning and memory capability using passive avoidance and Morris water maze; and reduced selective microgliosis in the molecular layer (DG Mo) compared with untreated cKO mice. Additionally, lithium treatment could increase β-catenin expression in cortex and hippocampus both in WT and cKO mice. These results further support that BCAS2 regulates cognitive learning and memory through β-catenin. Wnt/β-catenin signaling reportedly regulates the adult hippocampal neurogenesis. During neurogenesis, neuron stem cells (NSCs) can proliferate to maintain stem cell pool or differentiate to be mature granule cells for learning and memory storage. Therefore, we used IFA analysis to compare Sox2 expression cell between WT and cKO mice and found lower Sox2-positvie NSCs in cKO than WT mice. The declined number of Sox2-positvie NSCs in cKO mice which were restored by lithium treatment. Moreover, we administrated BrdU and IFA analysis to further examine the role of BCAS2 in growth of newborn neurons. We found that the declined number of Sox2 co-expressed with BrdU cells in cKO mice which were recovered by lithium treatment. Taken together, BCAS2 can regulate neuron stem cell activation/proliferation. Current report demonstrated that CaMKII expression rarely occurs in Nestin-expressing cells (about 2%). BCAS2 cKO mice were driven by CaMKII-Cre; the proportion of Sox2 stem cell in Cre transgenic WT mice was examined about 3.3% by measuring the percentage of Cre+Sox2+ cells to Sox2 single-positive cells in the SGZ. Hence to further precisely characterize BCAS2 effect on neuron stem/progenitor cells, we measured the percentage of Cre+Sox2+ cells to Cre single-positive cells in the SGZ in WT (CaMKIIα-Cre; BCAS2+/+) and BCAS2 cKO (CaMKIIα-Cre; BCAS2Flox/Flox). The results revealed that a higher percentage of Cre+Sox2+ cells to Cre single-positive cells in the SGZ in the lithium-treated group than in PBS-treated group both in WT and cKO mice. Furthermore, after BrdU administration, we evaluated the percentage of Cre+Sox2+BrdU+ cells to Cre single-positive cells in the SGZ, similar results displayed that BCAS2 plays a role in the maintenance of NSCs proliferation in SGZ and lithium administration increases NSCs proliferation both in the SGZ of WT and cKO mice. Collectively, lithium treatment can improve cognitive learning and memory and rescue Sox2 stem cell activation/proliferation in BCAS2 cKO mice.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:38:33Z (GMT). No. of bitstreams: 1
ntu-105-R03445115-1.pdf: 3277151 bytes, checksum: b4fc06a3183562ca5a48ea622502ec42 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
中文摘要 iii
Abstract v
Chapter 1 INTRODUCTION 1
1.1 The characteristic of BCAS2 1
1.2 Wnt/β-catenin signaling in neurodegenerative diseases 3
1.3 Reactive gliosis in neurodegenerative disorders 4
1.4 Lithium and Wnt/β-catenin signaling 5
1.5 BCAS2 and neurodegenerative disorders 6
1.6 Aim of this study 8
Chapter 2 MATERIALS AND METHODS 10
2.1 Mice cohorts 10
2.2 Cell culture and transfection 10
2.3 Western blot analysis 11
2.4 Immunocytochemistry 12
2.5 Tissue preparation 13
2.6 Immunohistochemistry 13
2.7 Lithium chloride administration 15
2.8 BrdU administration 15
2.9 Behavioral experiments 15
2.10 Stereological analysis 17
2.11 Statistical analysis 18
Chapter 3 RESULTS 19
3.1 Overexpression of β-catenin can rescue the impairment of filopodia formation in silenced BCAS2 expression of N2A cell. 19
3.2 Lithium treatment can rescue filopodia formation in BCAS2-deprivation N2A cells. 21
3.3 Lithium treatment to BCAS2 cKO mice results in the inhibition of GSK-3β and activation of β-catenin. 22
3.4 Lithium treatment improves the impaired cognitive behaviors of BCAS2 cKO mice. 24
3.5 Lithium treatment decreased selective microgliosis in hippocampus region of cKO mice. 27
3.6 Lithium treatment restores the reduction of NSC numbers and proliferation in the DG of BCAS2 cKO mice. 29
3.7 CaMKIIα-Cre expression pattern in NSC (Sox2+) in SGZ of DG. 32
Chapter 4 DISCUSSION 35
REFERENCES 45
FIGURES 53
dc.language.isoen
dc.title鋰鹽改善BCAS2剔除小鼠的神經缺損zh_TW
dc.titleConditional knock out BCAS2 in adult forebrain causing neural defect can be improved by lithium treatmenten
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李立仁,黃憲松
dc.subject.keywordBCAS2,條件式基因剔除小鼠(CaMKIIα-Cre,BCAS2Flox/Flox),Wnt/β-catenin訊息傳遞路徑,鋰鹽,微膠細胞增生,zh_TW
dc.subject.keywordBCAS2,BCAS2 cKO mice (CaMKIIα-Cre,BCAS2Flox/Flox),Wnt/β-catenin signaling,Lithium,microgliosis,en
dc.relation.page73
dc.identifier.doi10.6342/NTU201601423
dc.rights.note有償授權
dc.date.accepted2016-07-29
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept微生物學研究所zh_TW
顯示於系所單位:微生物學科所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
3.2 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved