Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50374
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor趙玲
dc.contributor.authorJou-Fang Wangen
dc.contributor.author王柔方zh_TW
dc.date.accessioned2021-06-15T12:38:13Z-
dc.date.available2019-08-02
dc.date.copyright2016-08-02
dc.date.issued2016
dc.date.submitted2016-07-29
dc.identifier.citation1. M. Tanaka and E. Sackmann, Nature, 2005, 437, 656-663.
2. J. A. Salon, D. T. Lodowski and K. Palczewski, Pharmacol Rev, 2011, 63, 901-937.
3. X. Zheng, S. Dong, J. Zheng, D. Li, F. Li and Z. Luo, Biotechnol Adv, 2014, 32, 564-574.
4. A. M. Seddon, P. Curnow and P. J. Booth, Biochimica et Biophysica Acta (BBA)-Biomembranes, 2004, 1666, 105-117.
5. S. Goennenwein, M. Tanaka, B. Hu, L. Moroder and E. Sackmann, Biophys. J., 2003, 85, 646-655.
6. M. Merzlyakov, E. Li, I. Gitsov and K. Hristova, Langmuir, 2006, 22, 10145-10151.
7. L. Renner, T. Pompe, R. Lemaitre, D. Drechsel and C. Werner, Soft Matter, 2010, 6, 5382.
8. M. L. Wagner and L. K. Tamm, Biophys. J., 2001, 81, 266-275.
9. K. M. Mulligan, Université d'Ottawa/University of Ottawa, 2013.
10. E. T. Castellana and P. S. Cremer, Surf. Sci. Rep., 2006, 61, 429-444.
11. I. P. McCabe and M. B. Forstner, 2013.
12. J. S. Hovis and S. G. Boxer, Langmuir, 2000, 16, 894-897.
13. S. Nirasay, A. Badia, G. Leclair, J. Claverie and I. Marcotte, Materials, 2012, 5, 2621-2636.
14. Q. Ye, R. Konradi, M. Textor and E. Reimhult, Langmuir, 2009, 25, 13534-13539.
15. K. Mulligan, Z. J. Jakubek and L. J. Johnston, Langmuir, 2011, 27, 14352-14359.
16. L. S. Y. Liew, M. Y. Lee, Y. L. Wong, J. Cheng, Q. Li and C. Kang, Protein Expression and Purification, 2016, 121, 141-148.
17. D. Lichtenberg, F. M. Goñi and H. Heerklotz, Trends Biochem. Sci, 2005, 30, 430-436.
18. L. T. Mimms, G. Zampighi, Y. Nozaki, C. Tanford and J. A. Reynolds, Biochemistry, 1981, 20, 833-840.
19. P. Sengupta, A. Hammond, D. Holowka and B. Baird, Biochimica et Biophysica Acta (BBA) - Biomembranes, 2008, 1778, 20-32.
20. E. Sezgin, H.-J. Kaiser, T. Baumgart, P. Schwille, K. Simons and I. Levental, Nat. Protocols, 2012, 7, 1042-1051.
21. G. J. Hardy, R. Nayak and S. Zauscher, Current Opinion in Colloid & Interface Science, 2013, 18, 448-458.
22. D. Stroumpoulis, A. Parra and M. Tirrell, AlChE J., 2006, 52, 2931-2937.
23. E. Sezgin, I. Levental, M. Grzybek, G. Schwarzmann, V. Mueller, A. Honigmann, V. N. Belov, C. Eggeling, Ü. Coskun and K. Simons, Biochimica et Biophysica Acta (BBA)-Biomembranes, 2012, 1818, 1777-1784.
24. C. Hamai, T. Yang, S. Kataoka, P. S. Cremer and S. M. Musser, Biophys. J., 2006, 90, 1241-1248.
25. T. H. Anderson, Y. Min, K. L. Weirich, H. Zeng, D. Fygenson and J. N. Israelachvili, Langmuir, 2009, 25, 6997-7005.
26. I. Czolkos, A. Jesorka and O. Orwar, Soft Matter, 2011, 7, 4562-4576.
27. L. Simonsson, A. Gunnarsson, P. Wallin, P. Jonsson and F. Hook, J. Am. Chem. Soc., 2011, 133, 14027-14032.
28. M. J. Richards, C. Y. Hsia, R. R. Singh, H. Haider, J. Kumpf, T. Kawate and S. Daniel, Langmuir, 2016, 32, 2963-2974.
29. P. B. Contino, C. A. Hasselbacher, J. Ross and Y. Nemerson, Biophys. J., 1994, 67, 1113.
30. J. Salafsky, J. T. Groves and S. G. Boxer, Biochemistry, 1996, 35, 14773-14781.
31. M. Tutus, F. F. Rossetti, E. Schneck, G. Fragneto, F. Forster, R. Richter, T. Nawroth and M. Tanaka, Macromolecular bioscience, 2008, 8, 1034-1043.
32. M. Tanaka, S. Kaufmann, J. Nissen and M. Hochrein, PCCP, 2001, 3, 4091-4095.
33. M. Tanaka, A. P. Wong, F. Rehfeldt, M. Tutus and S. Kaufmann, J. Am. Chem. Soc., 2004, 126, 3257-3260.
34. E. A. Smith, J. W. Coym, S. M. Cowell, T. Tokimoto, V. J. Hruby, H. I. Yamamura and M. J. Wirth, Langmuir, 2005, 21, 9644-9650.
35. C. Delajon, T. Gutberlet, R. Steitz, H. Mohwald and R. Krastev, Langmuir, 2005, 21, 8509-8514.
36. T. Baumgart and A. Offenhausser, Langmuir, 2003, 19, 1730-1737.
37. A. J. Diaz, F. Albertorio, S. Daniel and P. S. Cremer, Langmuir, 2008, 24, 6820-6826.
38. M. L. Wagner and L. K. Tamm, Biophys. J., 2000, 79, 1400-1414.
39. C. A. Naumann, O. Prucker, T. Lehmann, J. Ruhe, W. Knoll and C. W. Frank, Biomacromolecules, 2002, 3, 27-35.
40. W. v. Engen, Artificial cilia for microfluidics - Sylgard-184 spin-coating, http://willem.engen.nl/uni/intern-mbx/material/Sylgard-184-spincoat.php.
41. L. Renner, T. Osaki, S. Chiantia, P. Schwille, T. Pompe and C. Werner, The Journal of Physical Chemistry B, 2008, 112, 6373-6378.
42. D. Axelrod, D. Koppel, J. Schlessinger, E. Elson and W. Webb, Biophys. J., 1976, 16, 1055.
43. K.-S. Koh, J. Chin, J. Chia and C.-L. Chiang, Micromachines, 2012, 3, 427-441.
44. M. Sundh, S. Svedhem and D. S. Sutherland, PCCP, 2010, 12, 453-460.
45. G. J. Hardy, R. Nayak, S. M. Alam, J. G. Shapter, F. Heinrich and S. Zauscher, J. Mater. Chem., 2012, 22, 19506-19513.
46. H. Schönherr, J. M. Johnson, P. Lenz, C. W. Frank and S. G. Boxer, Langmuir, 2004, 20, 11600-11606.
47. UniProtKB, UniProtKB - P78536 (ADA17_HUMAN), http://www.uniprot.org/uniprot/P78536.
48. J. Scheller, A. Chalaris, C. Garbers and S. Rose-John, Trends in immunology, 2011, 32, 380-387.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50374-
dc.description.abstract膜蛋白是現今藥物發展中最主要的藥物作用標靶,在處理及研究這些膜蛋白的構造及功能時,保持其原本的結構及活性是難以達成的瓶頸。最主要的原因源自於膜蛋白脆弱的雙極性構造,處理過程中要避免原本位於細胞膜中之穿膜疏水構造受到水溶液環境的破壞,以免造成蛋白質構造之損毀及失活。在本研究中,我們直接從海拉細胞 (Hela cell) 發泡取出巨大細胞膜囊泡 (GPMV) 作為膜蛋白的來源,並製成支撐式脂雙層膜平台 (SLB),如此便能將膜蛋白在原始的脂雙層膜環境中被研究,以降低蛋白質失活的可能性。我們利用螢光漂白後恢復技術 (FRAP) 觀測到這些支撐式細胞膜具有流動性,並更進一步將支撐式細胞膜建構在聚合物墊層 (polymer cushion) 上,以減少蛋白質跟基材的摩擦力,而結果的確顯示在聚乙烯馬來酸酐 (PEMA) 及聚多巴胺 (Polydopamine)上的支撐式細胞膜比在玻璃基材上的支撐式細胞膜具有更好的流動性。此外,由於在細胞雙層膜上的膜蛋白具有不對稱性,在研究我們感興趣的膜蛋白時,了解及控制蛋白質的方向性,是件重要的事情。我們利用 ADAM17 抗體的檢測結果得知,當巨大細胞膜囊泡自發性地破在基材上時,原細胞膜的內層膜會面向外部水溶液的環境。我們更發展出膜翻印的技術,以另一種與細胞膜親和力更高的基材,將原先形成的支撐式細胞膜翻面,如此一來,原本面向基材的外層細胞膜就能被暴露至外部水溶液環境中,形成外層膜向外的支撐式細胞膜平台。有了這樣的翻模技術,我們就能利用支撐式細胞膜平台對感興趣的蛋白質進行雙向的研究。zh_TW
dc.description.abstractProcessing and handling cell membrane proteins while maintaining their intact structural information remains one of the biggest bottlenecks to characterize and understand their structure-function behavior, even though membrane proteins are the major targets for therapeutic development. Most of the problem stems from the requirement of protecting the delicate membrane-embedded hydrophobic core from water during processing to prevent denaturation and loss of function. Here, we obtained giant plasma membrane vesicles (GPMVs) directly from Hela cells and used them to form supported lipid bilayer platforms, so that the membrane proteins can be processed in their native lipid bilayer environment. The data from fluorescence recovery after photobleaching technique show that the species in the supported GPMV membrane platform have fluidity. GPMVs deposited on polymer cushions, PEMA and polydopamine, were shown to have better fluidity than those deposited on bare glass coverslips. More importantly, since the two lipid leaflets and the membrane proteins across the cell membrane are asymmetric, controlling which side of the cell membrane faces the aqueous environment and which one faces the solid support is important for us to study the interested protein function. The anti-ADAM17 antibody experiment shows that the inner leaflet faced the aqueous environment when the GPMVs spontaneously broke on the solid surface. We developed a blotting method to transfer the formed supported GPMV membrane to another suitable support to make an outer-leaflet-facing out supported GPMV membrane. With the blotting method, we might be able to use supported GPMV membranes to study membrane proteins from either side of the cell plasma membrane.en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:38:13Z (GMT). No. of bitstreams: 1
ntu-105-R03524045-1.pdf: 9600015 bytes, checksum: 51fc5bb8cb19337d95865c0b147969fb (MD5)
Previous issue date: 2016
en
dc.description.tableofcontentsAcknowledgement i
摘要 iv
Abstract v
Table of Content vii
Figure Captions x
Table Captions xiii
Chapter 1 Introduction 1
1.1 Biomimetic Membrane Models 4
1.1.1 Lipid Vesicles 4
1.1.2 Supported lipid bilayers (SLBs) 4
1.2 Supported Lipid Bilayer Platforms Incorporated with Membrane Proteins 6
1.2.1 Protein Purification with Detergents 7
1.2.2 Incorporating Extracted Membrane Proteins into Liposomes 7
1.2.3 Incorporating Membrane Proteins into SLBs 8
1.2.4 Drawbacks of Detergent Purification and the Importance to Control Protein Directionality 9
1.3 Giant Plasma Membrane Vesicles (GPMVs) 10
1.4 Mechanism of Vesicle Fusion on Substrates 11
1.5 Polymer Cushion 15
1.5.1 Independent polymer cushions 18
1.5.2 Polymer cushions coupled to lipid membranes 19
1.5.3 Polymer cushions grafted to substrates 20
1.5.4 Polymer grafted to both supports and lipid membranes 21
Chapter 2 Materials and Methods 22
2.1 Materials 22
2.2 Apparatus 24
2.3 Polydimethylsiloxane (PDMS) Chamber Preparation 25
2.4 Lipid Preparation 25
2.5 Supported Lipid Bilayer (SLB) Formation 26
2.6 Hela Cell Culture 26
2.7 Preparation of Fluorescent Giant Plasma Membrane Vesicles (GPMVs) 27
2.8 Giant Plasma Membrane Platform Formation 28
2.9 Membrane Blotting 28
2.9.1 Polydimethylsiloxane (PDMS) Substrate Preparation 28
2.9.2 Blotting with Weight 29
2.10 Immunostaining in GPMV contained SLBs 30
2.11 Polymer Cushion 30
2.11.1 Polydopamine Cushion 30
2.11.2 Poly(ethylene-alt-maleic anhydride) (PEMA) Cushion 31
2.12 Fluorescence Microscope Imaging and Fluorescence Recovery after Photobleaching (FRAP) 31
Chapter 3 Experiment Results 33
3.1 Preparation of Fluorescent Giant Plasma Membrane Vesicle (GPMV) 33
3.1.1 Giant Plasma Membrane Vesicle (GPMV) Blebbing 33
3.1.2 Dye-Labeled GPMVs 35
3.2 Plasma Membrane Platform Construction 35
3.2.1 GPMV deposition 35
3.2.2 DOPC Deposition and Lipid Exchange 36
3.3 Reverse-Oriented Plasma Membrane Platform Construction 37
3.3.1 GPMV Membrane Blotting 38
3.3.2 DOPC Deposition and Lipid Exchange for Reversed-Oriented GPMV Patches 40
3.4 Examination of Plasma Membrane Directionality on the Platform by Using Antibodies 41
3.5 Polymer-Cushioned DOPC SLBs 46
3.5.1 Poly(ethylene-alt-maleic anhydride) (PEMA) Cushion 46
3.5.2 Polydopamine Cushion 48
3.6 Polymer-Cushioned GPMV Membranes 49
Chapter 4 Discussion 53
4.1 Plasma Membrane Platform Construction 53
4.2 Reverse-oriented Plasma Membrane Platform 53
4.3 Platform Directionality Examination Using Antibodies 54
4.4 Polymer-Cushioned SLBs 57
4.4.1 Poly(ethylene-alt-maleic anhydride) (PEMA) Cushion 57
4.4.2 Polydopamine Cushion 58
4.4.3 Polymer-Cushioned GPMV Membrane 59
Chapter 5 Conclusion 61
Reference 62
dc.language.isoen
dc.subject脂蛋白體zh_TW
dc.subject支撐式脂雙層膜平台zh_TW
dc.subject巨大細胞膜囊泡zh_TW
dc.subject破裂機制zh_TW
dc.subject聚合物墊層zh_TW
dc.subject細胞膜方向性zh_TW
dc.subject膜翻印zh_TW
dc.subject脂蛋白體zh_TW
dc.subject支撐式脂雙層膜平台zh_TW
dc.subject巨大細胞膜囊泡zh_TW
dc.subject破裂機制zh_TW
dc.subject聚合物墊層zh_TW
dc.subject細胞膜方向性zh_TW
dc.subject膜翻印zh_TW
dc.subjectcell membrane orientationen
dc.subjectrupturing mechanismen
dc.subjectpolymer cushionen
dc.subjectmembrane blottingen
dc.subjectproteoliposomeen
dc.subjectsupported lipid bilayeren
dc.subjectgiant plasma membrane vesicle (GPMV)en
dc.title以細胞膜囊泡發展支撐式細胞膜平台以研究其膜蛋白之性能zh_TW
dc.titleDevelopment of supported plasma membrane platforms from giant plasma membrane vesicles to study membrane protein functionsen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee游佳欣,史有伶
dc.subject.keyword支撐式脂雙層膜平台,巨大細胞膜囊泡,破裂機制,聚合物墊層,細胞膜方向性,膜翻印,脂蛋白體,zh_TW
dc.subject.keywordsupported lipid bilayer,giant plasma membrane vesicle (GPMV),rupturing mechanism,polymer cushion,cell membrane orientation,membrane blotting,proteoliposome,en
dc.relation.page65
dc.identifier.doi10.6342/NTU201601588
dc.rights.note有償授權
dc.date.accepted2016-07-29
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
9.38 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved