請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50372完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林太家 | |
| dc.contributor.author | Jen-Chieh Teng | en |
| dc.contributor.author | 鄧仁傑 | zh_TW |
| dc.date.accessioned | 2021-06-15T12:38:08Z | - |
| dc.date.available | 2018-08-24 | |
| dc.date.copyright | 2016-08-24 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-07-28 | |
| dc.identifier.citation | [1] I. Borukhov, D. Andelman and H. Orland, Steric e ects in electrolytes: A modi ed Poisson-Boltzmann equation. Physical review letters 79.3 (1997): 435.
[2] D. Gilbarg and N. S. Trudinger: Elliptic partial di erential equations of sec- ond order. springer, 1983. [3] E. Grenier, Semiclassical limit of the nonlinear Schrodinger equation in small time. Proceedings of the American Mathematical Society 126.2 (1998): 523- 530. [4] C. C. Lee, The charge conserving Poisson-Boltzmann equations: Existence, uniqueness, and maximum principle. Journal of Mathematical Physics 55.5 (2014): 051503. [5] C. C. Lee, H. Lee, Y. Hyon, T. C. Lin and C. Liu, New Poisson–Boltzmann type equations: one-dimensional solutions. Nonlinearity 24.2 (2010): 431. [6] B. Li, X. Cheng, and Z. Zhang, Dielectric boundary force in molecular solva- tion with the Poisson-Boltzmann free energy: A shape derivative approach. SIAM journal on applied mathematics 71.6 (2011): 2093-2111. 61[7] B. Li, Minimization of electrostatic free energy and the Poisson-Boltzmann equation for molecular solvation with implicit solvent. SIAM Journal on Mathematical Analysis 40.6 (2009): 2536-2566. [8] F. H. Lin and P. Zhang, Semiclassical limit of the Gross-Pitaevskii equation in an exterior domain. Archive for rational mechanics and analysis 179.1 (2006): 79-107. [9] T. C. Lin and B. Eisenberg, A new approach to the Lennard-Jones potential and a new model: PNP-steric equations. Communications in Mathematical Sciences 12.1 (2014): 149-173. [10] T. C. Lin and B. Eisenberg, Multiple solutions of steady-state Poisson-Nernst- Planck equations with steric e ects. Nonlinearity 28.7 (2015): 2053. [11] T. C. Lin, M. R. Belić, M. S. Petrović and G. Chen, Ground states of nonlinear Schrodinger systems with saturable nonlinearity in R2 for two counterpropa- gating beams. Journal of Mathematical Physics 55.1 (2014): 011505. [12] T. C. Lin and P. Zhang, Incompressible and Comppressible Limits of Coupled Systems of Nonlinear Schr ̈odinger Equations. Communications in mathemat- ical physics 266.2 (2006): 547-569. [13] M. S. Petrović, M. R. Belić, C. Denz and Y. S. Kivshar, Counterpropagating optical beams and solitons. Laser and Photonics Reviews 5.2 (2011): 214-233. [14] H. Qing and F. H. Lin: Elliptic partial di erential equations. Vol. 1. American Mathematical Soc., 2011. [15] T. C. Sideris, Formation of singularities in three-dimensional compressible uids. Communications in Mathematical Physics 101.4 (1985): 475-485. [16] C. Sulem and P. L. Sulem: The nonlinear Schrodinger equation: self-focusing and wave collapse. Vol. 139. Springer Science and Business Media, 2007. [17] P. Zhang, Wigner Measure and the Semiclassical Limit of Schrodinger– Poisson Equations. SIAM journal on mathematical analysis 34.3 (2002): 700- 718. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50372 | - |
| dc.description.abstract | 這篇碩士論文主要分成兩個主題,首先是非線性薛丁格方程 (Nonlinear Schrodinger Equation) 解的可壓縮極限問題之研究;第 二部分則是探討具位阻效應的泊松 - 玻爾茲曼方程組 (Poisson- Boltzmann Equation with steric effect) 的問題。
第一部份為初步探討兩道相向傳播的雷射光(counterpropagating optical beams)打在光折變晶體(photorefractive crystals)上的數 學模型,此類問題屬於一種非線性薛丁格方程。我們使用 [12] 的方 法,定義對應之能量泛函 H-function 來控制薛丁格方程解的質量密 度以及線性動量密度,進而描述其質量密度函數 (mass density) 與 線性動量 (linear momentum) 分別收斂到所對應的某類古典可壓縮 歐拉方程的解的質量密度以及線性動量,並解釋其現象。 第二部分是關於具位阻效應之新泊松-玻爾茲曼方程組的模型推 廣。這個模型是從 [10] 而來。因為加上離子半徑大小這個影響因 素,使我們能更精準的描述離子在離子通道中作用的情況,但在數 學的處理上也更加複雜。我們考慮兩種離子並且給定一些條件使這 個方程組具有完備性。此外,我們給定一些離子半徑和化學能的限 制,來和 [6] 以及 [7] 的模型做比較。最後我們得到上述的模型為我 們的一個特例。 | zh_TW |
| dc.description.abstract | In this thesis, we discuss two distinct types of partial differential equations. One is the nonlinear Schrodinger equation and the other is the Poisson-Boltzmann type equations.
At first, we consider the system of two counterpropagating beams depicts the interaction of two counterpropagating optical beams in a photorefractive crystals. This is a preliminary study of nonlinear Schrodinger equation. We generalize the idea of [12] and define 'H ext{-function}' a modulated energy functional which may control the propagation of density and linear momentum in two-dimensional nonlinear Schrodinger equation. In the second scenario, we think over the behavior of ions in solutions with spatial effect, which depicts the behavior more accurate. In this work, we consider two-species ions PB_ns equation with steric effect which is subject to Robin type boundary condition. Which is more complicated than general PB equations. The main purpose of this part is to confirm the model is well posed and study the limiting behavior of the solution. Particularly, We can conclude that our model is more general than most of recent electrostatic models for electrolyte solutions. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T12:38:08Z (GMT). No. of bitstreams: 1 ntu-105-R03246002-1.pdf: 616261 bytes, checksum: 281f7799f1e9edb75317ed45b0100cc3 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | Acknowledgements I
Abstract (in Chinese) II Abstract (in English) III 1 Introduction 1 1.1 Nonlinear Schrodinger Equation..................... 1 1.2 Steady-state Poisson-Nernst-Planck equations with steric effect . . . . 2 2 Limit Problem of the Solution for the NLS Equation 5 2.1 Conservation Laws and H-function ................... 5 2.2 Compressible limits for the solution of NLS . . . . . . . . . . . . . . 10 2.3 Proof of Theorem2.2.1.......................... 12 2.4 Appendix I ................................ 20 3 A New Poisson-Boltzmann Equation with Steric Effects 23 3.1 Introduction................................ 23 3.2 Main Theorems.............................. 27 3.3 Well-Posedness of PB_ns ........................ 28 4 Limiting Behavior of Solutions 43 4.1 Uniformly Boundedness of Electrostatic Potential . . . . . . . . . . . 43 4.2 Properties of PB_ns ........................... 49 4.3 Proof of Theorem3.2.2.......................... 57 4.4 Conclusion................................. 59 Reference 61 | |
| dc.language.iso | en | |
| dc.subject | 泊松-玻爾茲曼方程 | zh_TW |
| dc.subject | 非線性薛丁格方程 | zh_TW |
| dc.subject | 可壓縮極限 | zh_TW |
| dc.subject | 半古典極限 | zh_TW |
| dc.subject | 位阻效應 | zh_TW |
| dc.subject | 漸近行為 | zh_TW |
| dc.subject | 非線性薛丁格方程 | zh_TW |
| dc.subject | 可壓縮極限 | zh_TW |
| dc.subject | 半古典極限 | zh_TW |
| dc.subject | 泊松-玻爾茲曼方程 | zh_TW |
| dc.subject | 位阻效應 | zh_TW |
| dc.subject | 漸近行為 | zh_TW |
| dc.subject | Poisson-Boltzmann Equation | en |
| dc.subject | Asymptotic behavior | en |
| dc.subject | compressible limit | en |
| dc.subject | semiclassical limit | en |
| dc.subject | Steric effect | en |
| dc.subject | Nonlinear Schrodinger equation | en |
| dc.subject | Asymptotic behavior | en |
| dc.subject | Nonlinear Schrodinger equation | en |
| dc.subject | compressible limit | en |
| dc.subject | semiclassical limit | en |
| dc.subject | Poisson-Boltzmann Equation | en |
| dc.subject | Steric effect | en |
| dc.title | 非線性薛丁格方程以及具位阻效應之新泊松−玻爾茲曼方程組漸近解的研究 | zh_TW |
| dc.title | Asymptotic Analysis of Nonlinear Schrodinger Equations and A New Poisson-Boltzmann Equation with Steric Effect | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳俊全,吳宗芳,李俊璋 | |
| dc.subject.keyword | 非線性薛丁格方程,可壓縮極限,半古典極限,泊松-玻爾茲曼方程,位阻效應,漸近行為, | zh_TW |
| dc.subject.keyword | Nonlinear Schrodinger equation,compressible limit,semiclassical limit,Poisson-Boltzmann Equation,Steric effect,Asymptotic behavior, | en |
| dc.relation.page | 63 | |
| dc.identifier.doi | 10.6342/NTU201601576 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-07-29 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 應用數學科學研究所 | zh_TW |
| 顯示於系所單位: | 應用數學科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 601.82 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
