Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50347
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝宗霖
dc.contributor.authorChia-I Laien
dc.contributor.author賴佳儀zh_TW
dc.date.accessioned2021-06-15T12:37:12Z-
dc.date.available2019-08-03
dc.date.copyright2016-08-03
dc.date.issued2016
dc.date.submitted2016-07-29
dc.identifier.citation1. Mo, S.-D. and W.Y. Ching, Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite. Physical Review B, 1995. 51(19): p. 13023-13032.
2. Breckenridge, R.G. and W.R. Hosler, Electrical Properties of Titanium Dioxide Semiconductors. Physical Review, 1953. 91(4): p. 793-802.
3. Glassford, K.M. and J.R. Chelikowsky, Optical properties of titanium dioxide in the rutile structure. Physical Review B, 1992. 45(7): p. 3874-3877.
4. Amtout, A. and R. Leonelli, Optical properties of rutile near its fundamental band gap. Physical Review B, 1995. 51(11): p. 6842-6851.
5. Diebold, U., The surface science of titanium dioxide. Surface science reports, 2003. 48(5): p. 53-229.
6. Tang, H., et al., Electrical and optical properties of TiO2 anatase thin films. Journal of Applied Physics, 1994. 75(4): p. 2042.
7. Fujishima, A., X. Zhang, and D. Tryk, TiO2 photocatalysis and related surface phenomena. Surface Science Reports, 2008. 63(12): p. 515-582.
8. Morgan, B.J. and G.W. Watson, Intrinsic n-type Defect Formation in TiO2: A Comparison of Rutile and Anatase from GGA+UCalculations. The Journal of Physical Chemistry C, 2010. 114(5): p. 2321-2328.
9. Czanderna, A.W., C.N.R. Rao, and J.M. Honig, The anatase-rutile transition. Part 1.-Kinetics of the transformation of pure anatase. Transactions of the Faraday Society, 1958. 54: p. 1069.
10. R. D. Shannon and J. A. Pask, Kinetics of the Anatase-Rutile Transformation. Journal of the American Ceramic Society, 1965. 48(8): p. 391-398.
11. Navrotsky, A. and O.J. Kleppa, Enthalpy of the Anatase-Rutile Transformation. Journal of the American Ceramic Society, 1967. 50(11): p. 626-626.
12. Mitsuhashi, T. and O.J. Kleppa, Transformation Enthalpies of the TiO2 Polymorphs. Journal of the American Ceramic Society, 1979. 62(7-8): p. 356-357.
13. Zhang, H. and J.F. Banfield, Phase transformation of nanocrystalline anatase-to-rutile via combined interface and surface nucleation. Journal of Materials Research, 2011. 15(02): p. 437-448.
14. Austin, R.H. and S.-f. Lim, The Sackler Colloquium on promises and perils in nanotechnology for medicine. Proceedings of the National Academy of Sciences, 2008. 105(45): p. 17217-17221.
15. Hanaor, D.A.H. and C.C. Sorrell, Review of the anatase to rutile phase transformation. Journal of Materials Science, 2011. 46(4): p. 855-874.
16. Chen, X. and S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev, 2007. 107(7): p. 2891-959.
17. Liu, N., et al., A review on TiO2-based nanotubes synthesized via hydrothermal method: Formation mechanism, structure modification, and photocatalytic applications. Catalysis Today, 2014. 225: p. 34-51.
18. Macak, J.M., et al., TiO2 nanotubes: Self-organized electrochemical formation, properties and applications. Current Opinion in Solid State and Materials Science, 2007. 11(1-2): p. 3-18.
19. Gong, D., et al., Titanium oxide nanotube arrays prepared by anodic oxidation. Journal of Materials Research, 2001. 16(12): p. 3331-3334.
20. Cai, Q., et al., The Effect of Electrolyte Composition on the Fabrication of Self-Organized Titanium Oxide Nanotube Arrays by Anodic Oxidation. Journal of Materials Research, 2011. 20(01): p. 230-236.
21. Macak, J.M., H. Tsuchiya, and P. Schmuki, High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angew Chem Int Ed Engl, 2005. 44(14): p. 2100-2.
22. Macak, J.M., et al., Smooth anodic TiO2 nanotubes. Angew Chem Int Ed Engl, 2005. 44(45): p. 7463-5.
23. Paulose, M., et al., Anodic growth of highly ordered TiO2 nanotube arrays to 134 microm in length. J Phys Chem B, 2006. 110(33): p. 16179-84.
24. Shankar, K., et al., Highly-ordered TiO2 nanotube arrays up to 220 µm in length: use in water photoelectrolysis and dye-sensitized solar cells. Nanotechnology, 2007. 18(6): p. 065707.
25. Albu, S.P., et al., 250 µm long anodic TiO2 nanotubes with hexagonal self-ordering. physica status solidi (RRL) – Rapid Research Letters, 2007. 1(2): p. R65-R67.
26. Macak, J.M., S.P. Albu, and P. Schmuki, Towards ideal hexagonal self-ordering of TiO2 nanotubes. physica status solidi (RRL) – Rapid Research Letters, 2007. 1(5): p. 181-183.
27. Li, S., et al., Anodization Fabrication of Highly Ordered TiO2Nanotubes. The Journal of Physical Chemistry C, 2009. 113(29): p. 12759-12765.
28. Im, B., et al., Fabrication of nanoporous MTiO3 (M = Pb, Ba, Sr) perovskite array films with unprecedented high structural regularity. CrystEngComm, 2011. 13(24): p. 7212.
29. Zhang, Z., M.F. Hossain, and T. Takahashi, Photoelectrochemical water splitting on highly smooth and ordered TiO2 nanotube arrays for hydrogen generation. International Journal of Hydrogen Energy, 2010. 35(16): p. 8528-8535.
30. Yasuda, K., et al., Mechanistic Aspects of the Self-Organization Process for Oxide Nanotube Formation on Valve Metals. Journal of The Electrochemical Society, 2007. 154(9): p. C472.
31. Taveira, L.V., et al., Initiation and Growth of Self-Organized TiO[sub 2] Nanotubes Anodically Formed in NH[sub 4]F/(NH[sub 4])[sub 2]SO[sub 4] Electrolytes. Journal of The Electrochemical Society, 2005. 152(10): p. B405.
32. Roy, P., S. Berger, and P. Schmuki, TiO2 nanotubes: synthesis and applications. Angew Chem Int Ed Engl, 2011. 50(13): p. 2904-39.
33. Sohn, J.I., et al., Fabrication of high-density arrays of individually isolated nanocapacitors using anodic aluminum oxide templates and carbon nanotubes. Applied Physics Letters, 2005. 87(12): p. 123115.
34. Shelimov, K.B., D.N. Davydov, and M. Moskovits, Template-grown high-density nanocapacitor arrays. Applied Physics Letters, 2000. 77(11): p. 1722.
35. Klootwijk, J.H., et al., Ultrahigh Capacitance Density for Multiple ALD-Grown MIM Capacitor Stacks in 3-D Silicon. IEEE Electron Device Letters, 2008. 29(7): p. 740-742.
36. Kemell, M., et al., Si/Al2O3/ZnO:Al capacitor arrays formed in electrochemically etched porous Si by atomic layer deposition. Microelectronic Engineering, 2007. 84(2): p. 313-318.
37. Burke, M., et al., High aspect ratio iridescent three-dimensional metal–insulator–metal capacitors using atomic layer deposition. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2015. 33(1): p. 01A103.
38. Banerjee, P., et al., Nanotubular metal-insulator-metal capacitor arrays for energy storage. Nat Nanotechnol, 2009. 4(5): p. 292-6.
39. Lin, C.-H., Formation and Characterization of Composite Nanostructures from Photocatalytic, Dielectric and Ferroelectric Materials. 2015: p. 42-128.
40. Bhalla, S.A., R. Guo, and R. Roy, The perovskite structure – a review of its role in ceramic science and technology. Material Research Innovations, 2000. 4(1): p. 3-26.
41. Pradhan, S. and G. Roy, Study the crystal structure and phase transition of BaTiO3-A pervoskite. Researcher, 2013. 5(3): p. 63-67.
42. Xu, Y., Ferroelectric materials and their applications. 2013: Elsevier.
43. Villafuerte-Castrejón, M., et al., Towards Lead-Free Piezoceramics: Facing a Synthesis Challenge. Materials, 2016. 9(1): p. 21.
44. Wei, X., Hydrothermal synthesis of BaTiO3 thin films on nanoporous TiO2 covered Ti substrates. Journal of Crystal Growth, 2006. 286(2): p. 371-375.
45. Zhang, F., et al., Hydrothermal Synthesis of BaTiO<sub>3</sub> Nanotubes on Ti Substrates. Advanced Materials Research, 2009. 79-82: p. 617-620.
46. Padture, N.P. and X. Wei, Hydrothermal Synthesis of Thin Films of Barium Titanate Ceramic Nano‐Tubes at 200° C. Journal of the American Ceramic Society, 2003. 86(12): p. 2215-2217.
47. Zhao, J., et al., Synthesis of thin films of barium titanate and barium strontium titanate nanotubes on titanium substrates. Materials Letters, 2005. 59(18): p. 2329-2332.
48. Chen, D., et al., Well-ordered arrays of ferroelectric single-crystalline BaTiO3 nanostructures. physica status solidi (a), 2012. 209(4): p. 714-717.
49. Lamberti, A., et al., Synthesis of ferroelectric BaTiO3tube-like arrays by hydrothermal conversion of a vertically aligned TiO2nanotube carpet. New J. Chem., 2014. 38(5): p. 2024-2030.
50. Bacsa, R., P. Ravindranathan, and J. Dougherty, Electrochemical, hydrothermal, and electrochemical-hydrothermal synthesis of barium titanate thin films on titanium substrates. Journal of materials research, 1992. 7(02): p. 423-428.
51. Kajiyoshi, K., Y. Sakabe, and M. Yoshimura, Electrical properties of BaTiO3 thin film grown by the hydrothermal-electrochemical method. Japanese journal of applied physics, 1997. 36(3R): p. 1209.
52. Puurunen, R.L., Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process. Journal of Applied Physics, 2005. 97(12): p. 121301.
53. Johnson, R.W., A. Hultqvist, and S.F. Bent, A brief review of atomic layer deposition: from fundamentals to applications. Materials Today, 2014. 17(5): p. 236-246.
54. Leskelä, M. and M. Ritala, Atomic layer deposition (ALD): from precursors to thin film structures. Thin solid films, 2002. 409(1): p. 138-146.
55. George, S.M., Atomic layer deposition: an overview. Chemical reviews, 2009. 110(1): p. 111-131.
56. George, S., A. Ott, and J. Klaus, Surface chemistry for atomic layer growth. The Journal of Physical Chemistry, 1996. 100(31): p. 13121-13131.
57. How ALD Compares with Other Deposition Techniques.
58. Alfonso, F. and Tim, ALD Precursor Delivery & Debugging: A Case Study in Polymer Development.
59. Kudo, A. and Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev, 2009. 38(1): p. 253-78.
60. Kudo, A., Photocatalyst materials for water splitting. Catalysis Surveys from Asia, 2003. 7(1): p. 31-38.
61. Matsuoka, M., et al., Photocatalysis for new energy production: recent advances in photocatalytic water splitting reactions for hydrogen production. Catalysis Today, 2007. 122(1): p. 51-61.
62. Fujishima, A., Electrochemical photolysis of water at a semiconductor electrode. nature, 1972. 238: p. 37-38.
63. Fujishima, A. and K. Honda, Electrochemical evidence for the mechanism of the primary stage of photosynthesis. Bulletin of the chemical society of Japan, 1971. 44(4): p. 1148-1150.
64. Van de Krol, R. and M. Grätzel, Photoelectrochemical hydrogen production. Vol. 90. 2012: Springer.
65. Nozik, A.J. and R. Memming, Physical chemistry of semiconductor-liquid interfaces. The Journal of Physical Chemistry, 1996. 100(31): p. 13061-13078.
66. Rajeshwar, K., Fundamentals of semiconductor electrochemistry and photoelectrochemistry. Encyclopedia of electrochemistry, 2007.
67. Bak, T., et al., Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects. International journal of hydrogen energy, 2002. 27(10): p. 991-1022.
68. GRIMES, C., O. VARGHESE, and S. RANJAN, Light, water, hydrogen: the solar generation of hydrogen by water photoelectrolysis. 2007: Springer Science & Business Media.
69. Herrmann, J.-M., Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catalysis today, 1999. 53(1): p. 115-129.
70. Ni, M., et al., A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable and Sustainable Energy Reviews, 2007. 11(3): p. 401-425.
71. Anpo, M., The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. Journal of Catalysis, 2003. 216(1-2): p. 505-516.
72. Diebold, U., The surface science of titanium dioxide. Surface science reports, 2003. 48(5): p. 53-229.
73. Fujishima, A., X. Zhang, and D.A. Tryk, TiO 2 photocatalysis and related surface phenomena. Surface Science Reports, 2008. 63(12): p. 515-582.
74. Fujishima, A., T.N. Rao, and D.A. Tryk, Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2000. 1(1): p. 1-21.
75. Kitano, M., et al., Recent developments in titanium oxide-based photocatalysts. Applied Catalysis A: General, 2007. 325(1): p. 1-14.
76. Roy, P., S. Berger, and P. Schmuki, TiO2 nanotubes: synthesis and applications. Angewandte Chemie International Edition, 2011. 50(13): p. 2904-2939.
77. Abe, R., Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2010. 11(4): p. 179-209.
78. Reyes-Coronado, D., et al., Phase-pure TiO(2) nanoparticles: anatase, brookite and rutile. Nanotechnology, 2008. 19(14): p. 145605.
79. Mo, S.-D. and W. Ching, Electronic and optical properties of three phases of titanium dioxide: rutile, anatase, and brookite. Physical Review B, 1995. 51(19): p. 13023.
80. Sclafani, A. and J. Herrmann, Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phases and in aqueous solutions. The Journal of Physical Chemistry, 1996. 100(32): p. 13655-13661.
81. Zhang, J., et al., New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Phys Chem Chem Phys, 2014. 16(38): p. 20382-6.
82. Daghrir, R., P. Drogui, and D. Robert, Modified TiO2 For Environmental Photocatalytic Applications: A Review. Industrial & Engineering Chemistry Research, 2013: p. 130226090752004.
83. Maeda, K., Photocatalytic water splitting using semiconductor particles: History and recent developments. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2011. 12(4): p. 237-268.
84. Di Valentin, C., et al., N-doped TiO2: Theory and experiment. Chemical Physics, 2007. 339(1-3): p. 44-56.
85. Robert, D., Photosensitization of TiO2 by MxOy and MxSy nanoparticles for heterogeneous photocatalysis applications. Catalysis Today, 2007. 122(1-2): p. 20-26.
86. Ouyang, J., M. Chang, and X. Li, CdS-sensitized ZnO nanorod arrays coated with TiO2 layer for visible light photoelectrocatalysis. Journal of Materials Science, 2012. 47(9): p. 4187-4193.
87. Nowotny, M., et al., Defect chemistry of titanium dioxide. Application of defect engineering in processing of TiO2-based photocatalysts. The Journal of Physical Chemistry C, 2008. 112(14): p. 5275-5300.
88. Nakamura, I., et al., Role of oxygen vacancy in the plasma-treated TiO 2 photocatalyst with visible light activity for NO removal. Journal of Molecular Catalysis A: Chemical, 2000. 161(1): p. 205-212.
89. Toomey, M.D., et al., Hydrothermal Synthesis and Processing of Barium Titanate Nanoparticles Embedded in Polymer Films. ACS Appl Mater Interfaces, 2015. 7(51): p. 28640-6.
90. Ayouchi, R., et al., Compositional, structural and electrical characterization of barium titanate thin films prepared on fused silica and Si (111) by spray pyrolysis. Surface and interface analysis, 2000. 30(1): p. 565-569.
91. Joshi, U.A., et al., Surfactant-free hydrothermal synthesis of highly tetragonal barium titanate nanowires: a structural investigation. The Journal of Physical Chemistry B, 2006. 110(25): p. 12249-12256.
92. Spurr, R.A. and H. Myers, Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer. Analytical Chemistry, 1957. 29(5): p. 760-762.
93. Yu, J. and B. Wang, Effect of calcination temperature on morphology and photoelectrochemical properties of anodized titanium dioxide nanotube arrays. Applied Catalysis B: Environmental, 2010. 94(3-4): p. 295-302.
94. Varghese, O.K., et al., Crystallization and high-temperature structural stability of titanium oxide nanotube arrays. Journal of Materials Research, 2003. 18(01): p. 156-165.
95. Chen, C.-H., The Structural, Photocatalytic and Photoelectric Properties of Oxide-Based Heterojunction Nanostructure. 2013: p. 88-89.
96. López, R. and R. Gómez, Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study. Journal of Sol-Gel Science and Technology, 2011. 61(1): p. 1-7.
97. Tauc, J., R. Grigorovici, and A. Vancu, Optical properties and electronic structure of amorphous germanium. physica status solidi (b), 1966. 15(2): p. 627-637.
98. Barton, D.G., et al., Structure and electronic properties of solid acids based on tungsten oxide nanostructures. The Journal of Physical Chemistry B, 1999. 103(4): p. 630-640.
99. Džimbeg-Malčić, V., Ž. Barbarić-Mikočević, and K. Itrić, Kubelka-Munk theory in describing optical properties of paper (I). Tehnički vjesnik, 2011. 18(1): p. 117-124.
100. Di Valentin, C., G. Pacchioni, and A. Selloni, Theory of carbon doping of titanium dioxide. Chemistry of Materials, 2005. 17(26): p. 6656-6665.
101. Lu, N., et al., Fabrication of boron-doped TiO2 nanotube array electrode and investigation of its photoelectrochemical capability. The Journal of Physical Chemistry C, 2007. 111(32): p. 11836-11842.
102. Xi, X., et al., Density functional study of X monodoped and codoped (X=C, N, S, F) anatase TiO2. Computational Materials Science, 2014. 93: p. 1-5.
103. Dong, Y., et al., Morphology change and band gap narrowing of hierarchical TiO2 nanostructures induced by fluorine doping. CrystEngComm, 2013. 15(48): p. 10657.
104. Dozzi, M.V., B. Ohtani, and E. Selli, Absorption and action spectra analysis of ammonium fluoride-doped titania photocatalysts. Phys Chem Chem Phys, 2011. 13(40): p. 18217-27.
105. Di Valentin, C., et al., Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations. The Journal of Physical Chemistry B, 2005. 109(23): p. 11414-11419.
106. Zhang, J., et al., Development of modified N doped TiO 2 photocatalyst with metals, nonmetals and metal oxides. Energy & Environmental Science, 2010. 3(6): p. 715-726.
107. Zhao, W., et al., Enhanced photocatalytic activity for H2 evolution under irradiation of UV-vis light by Au-modified nitrogen-doped TiO2. PLoS One, 2014. 9(8): p. e103671.
108. Lin, Z., et al., New insights into the origin of visible light photocatalytic activity of nitrogen-doped and oxygen-deficient anatase TiO2. The Journal of Physical Chemistry B, 2005. 109(44): p. 20948-20952.
109. Viswanathan, B. and K.R. Krishanmurthy, Nitrogen Incorporation in TiO2: Does It Make a Visible Light Photo-Active Material? International Journal of Photoenergy, 2012. 2012: p. 1-10.
110. Yang, K., Y. Dai, and B. Huang, Study of the nitrogen concentration influence on N-doped TiO2 anatase from first-principles calculations. The Journal of Physical Chemistry C, 2007. 111(32): p. 12086-12090.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50347-
dc.description.abstract二氧化鈦奈米管陣列為具有高化學穩定性、光電轉換特性之高比表面積結構,無論是應用於複合電容之領域,或是利用光催化特性應用於太陽能之領域,其皆扮演重要的角色。本研究嘗試以二氧化鈦奈米管陣列結構作為模板開發具有特殊結構之複合電容,並嘗試改善介電材料與奈米管結構之複合品質來提高電容表現。另一方面,本研究將不同陽極處理階段數之二氧化鈦奈米管陣列進行退火處理,藉由維持較完整的奈米管陣列結構來提升光觸媒對於可見光的催化活性。
在複合電容方面,本研究以陽極處理法製備高比表面積之二氧化鈦奈米管陣列結構,並透過濕化學蝕刻以及水熱法製程來調整結構以及化學組成,最後以原子層沉積法填入二氧化鉿完成二氧化鈦與高介電材料複合結構之製備。各項分析結果之搭配,我們發現較短的奈米管陣列結構,可在縮小尺度的情況下僅犧牲小部分之電容表現且介電材料二氧化鉿與奈米管陣列結構之接觸面積為影響電容表現之重要指標。電容表現之貢獻機制中,二氧化鈦材料在界面處之空乏區寬度變化所貢獻之空間電荷極化為影響電容表現之重要機制。
本研究在光催化特性探討方面,同樣是以陽極處理法所製備二氧化鈦奈米管陣列為模板,在不同溫度下進行退火處理後,較高的退火溫度雖然可具有較高的氧空缺濃度與氮摻雜程度、以及較高比例的Rutile相,進而降低較多的能隙值,但高溫的退火過程亦會使奈米管陣列結構有坍塌的現象而減少照光面積。本研究發現在紫外光波段下,一階段的陽極處理搭配較低溫之退火有比較好的表現;而兩階段的陽極處理搭配較高溫的退火將能在可見光波段下有良好的光催化能力。
zh_TW
dc.description.abstractTitania nanotube arrays (TNTs) is playing an important role in the field of composite capacitor and improvement of the efficiency of water splitting because of its high chemical stability and high aspect ratio. In this study, we try to develop the unique composite capacitor with special nanostructure from the TNTs. On the other side, The TNTs from one-step or two-step anodization was going through annealing treatment with different temperature. The optical and photoelectric properties to visible light of these photocatalysts would be improved when maintaining complete nanotube arrays structure.
To produce composite capacitor, we synthesize TNTs with high aspect ratio from anodization treatment. The structure and chemical composition can be tuned by the combination of wet-etching process and hydrothermal treatment. Filling the nanotube arrays with HfO2 by ALD to produce the composite structure of TiO2 and high-K materials. From the results of several analysis, we found that the shorter nanotube arrays can scale down only with little decreased capacitance. The contact area of high-K material and nanotube arrays structure is the important index of the capacitor performance. And among the polarization mechanisms we proposed, space charge polarization from the width variation of the depletion layer is the most important.one.
The other topic of this study is to investigate the photocatalytic ability of the annealed anodized TNTs. Higher annealing temperature can induce higher concentration of oxygen vacancies, extent of nitrogen doping and the ratio of rutile phase, and these are known as band gap narrowing factors. However, higher annealing temperature will make TNTs sintered to become rutile film layer and collapsed, which decreasing irradiated area. In conclusion, one-step anodized TNTs combining the low temperature annealing can perform well under UV light. The better photocatalytic performance can be achieved by the combination of two-step anodized TNTs and higher annealing temperature.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:37:12Z (GMT). No. of bitstreams: 1
ntu-105-R03527004-1.pdf: 10834912 bytes, checksum: 128a3e6ef58c299074204edd23f3b51c (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
摘要 iv
Abstract v
目錄 vii
圖目錄 x
表目錄 xvi
第一章 緒論 1
1.1 研究背景與動機 1
1.2 論文架構 3
第二章 文獻回顧 4
2.1 二氧化鈦 4
2.1.1 二氧化鈦的基本性質 4
2.1.2 陽極處理製備二氧化鈦奈米管陣列 7
2.2 二氧化鈦與複合電容 12
2.2.1 奈米管結構之複合電容 12
2.2.2 二氧化鈦奈米管陣列結構與複合電容 14
2.2.3 介電材料鈦酸鋇 18
2.2.3.1 鈦酸鋇的基本性質 18
2.2.3.2 利用水熱法製備鈦酸鋇與二氧化鈦複合結構 21
2.2.4 原子層沉積材料於高比表面積結構構 24
2.3 二氧化鈦之光催化特性 27
2.3.1 光解水裝置 27
2.3.1.1 光解水反應原理 27
2.3.1.2 光電化學電池PEC裝置 30
2.3.2 光觸媒材料 35
2.3.2.1 常見的光觸媒材料 35
2.3.2.2 二氧化鈦與光觸媒材料 37
2.3.3 光催化能力的提升 40
第三章 實驗方法 42
3.1 複合電容 42
3.1.1 於水基電解液中製備二氧化鈦奈米管陣列 42
3.1.2 濕化學蝕刻水基二氧化鈦奈米管陣列 42
3.1.3 以水熱法合成鈦酸鋇與二氧化鈦複合結構 43
3.1.4 以原子層沉積技術製備二氧化鈦與高介電材料複合結構 44
3.2 光觸媒 45
3.2.1 於有機電解液中製備二氧化鈦奈米管陣列 45
3.2.1.1 一階段陽極處理之二氧化鈦奈米管陣列 45
3.2.1.2 兩階段陽極處理之二氧化鈦奈米管陣列 46
3.2.2 以原子層沉積技術填入二氧化鈦 47
3.3 材料分析 48
3.3.1 形貌與晶體結構分析 48
3.3.2 原子成分判定 48
3.3.2.1 歐傑電子能譜分析 48
3.3.2.2 X光光電子能譜分析 49
3.3.3 電性分析 49
3.3.3.1 電極的製備 49
3.3.3.2 介電性質分析 50
3.3.4 能帶結構分析 52
3.3.4.1 紫外光/可見光光譜分析 52
3.3.4.2 紫外光光電子能譜儀 52
3.3.5 光電流密度量測 53
第四章 結果與討論 55
4.1 奈米結構複合電容 55
4.1.1 水基二氧化鈦奈米管陣列結構 55
4.1.2 二氧化鈦與鈦酸鋇複合結構 57
4.1.3 二氧化鈦與高介電材料複合電容 64
4.1.3.1 二氧化鈦與二氧化鉿複合電容 64
4.1.3.2 二氧化鈦、鈦酸鋇與二氧化鉿複合電容 77
4.1.4 各項複合電容之綜合比較 89
4.2 二氧化鈦奈米管陣列之光催化特性研究 91
4.2.1 一階段陽極處理之二氧化鈦奈米管陣列結構 91
4.2.2 兩階段陽極處理之二氧化鈦奈米管陣列結構 103
4.2.3 沉積二氧化鈦於兩階段奈米管陣列 111
4.2.4 綜合比較 119
第五章 結論 120
5.1 研究成果 120
5.2 未來研究方向 122
參考文獻 123
dc.language.isozh-TW
dc.title二氧化鈦奈米複合結構之電容與光催化特性研究zh_TW
dc.titleThe capacitive and photocatalytic properties of composite nanostructures based on titaniaen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee段維新,陳敏璋,薛景中
dc.subject.keyword二氧化鈦,二氧化鉿,鈦酸鋇,陽極氧化,水熱法,原子層沉積技術,奈米管狀電容,光電極,光催化,zh_TW
dc.subject.keywordTitania,Hafnium dioxide,Barium titanate,Anodization treatment,Atomic layer deposition,Nanotubular capacitor,Photoelectrode,Photocalysis,en
dc.relation.page134
dc.identifier.doi10.6342/NTU201601541
dc.rights.note有償授權
dc.date.accepted2016-07-30
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
10.58 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved