Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50342
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor呂良正
dc.contributor.authorYu-Shan Hongen
dc.contributor.author洪郁珊zh_TW
dc.date.accessioned2021-06-15T12:37:01Z-
dc.date.available2019-08-03
dc.date.copyright2016-08-03
dc.date.issued2016
dc.date.submitted2016-07-29
dc.identifier.citationAbe, M. and Fujino, Y. (1994). Dynamic characterization of multiple tuned mass dampers and some design formulas. Earthquake Engineering & Structural Dynamics, 23(8), 813-835.
Bishop, R. and Welbourn, D. (1952). The problem of the dynamic vibration absorber. Engineering, London, 174, 769.
Chopra, A. K. (2007). Dynamics of Structures: Theory and Applications to Earthquake Engineering, Prentice Hall New Jersey.
Den Hartog, J. and Ormondroyd, J. (1928). Theory of the dynamic vibration absorber. ASME J. Appl. Mech, 50(7), 11-22.
Den Hartog, J. P. (1985). Mechanical vibrations: 4th edition, MaGraw-Hill, New York.
Elias, S. and Matsagar, V. (2014). Distributed Multiple Tuned Mass Dampers for Wind Vibration Response Control of High-Rise Building. Journal of Engineering, 2014.
Frahm, H. (1911). Device for damping vibrations of bodies: Google Patents.
Humar, J. (2012). Dynamics of structures: CRC Press.
Kareem, A. and Kline, S. (1995). Performance of multiple mass dampers under random loading. Journal of Structural Engineering, 121(2), 348-361.
Lee, C. L., Chen, Y. T., Chung, L. L. and Wang, Y. P. (2006). Optimal design theories and applications of tuned mass dampers. Engineering Structures, 28(1), 43-53.
Li, C. and Zhang, L. (2005). Evaluation of the Dual-Layer Multiple Tuned Mass Dampers for Structures Subjected to Earthquake. Journal of Vibration and Shock, 24(5), 42-45.
Lin, C. C., Ueng, J. M. and Huang, T. C. (2000). Seismic response reduction of irregular buildings using passive tuned mass dampers. Engineering Structures, 22(5), 513-524.
Mohebbi, M. and Joghataie, A. (2012). Designing optimal tuned mass dampers for nonlinear frames by distributed genetic algorithms. The Structural Design of Tall and Special Buildings, 21(1), 57-76.
Rana, R. and Soong, T. T. (1998). Parametric study and simplified design of tuned mass dampers. Engineering Structures, 20(3), 193-204.
Snowdon, J. (1959). Steady‐State Behavior of the Dynamic Absorber. The Journal of the Acoustical Society of America, 31(8), 1096-1103.
Varadarajan, N. and Nagarajaiah, S. (2004). Wind response control of building with variable stiffness tuned mass damper using empirical mode decomposition/Hilbert transform. Journal of Engineering Mechanics, 130(4), 451-458.
Warburton, G. (1982). Optimum absorber parameters for various combinations of response and excitation parameters. Earthquake Engineering & Structural Dynamics, 10(3), 381-401.
Warburton, G. and Ayorinde, E. (1980). Optimum absorber parameters for simple systems. Earthquake Engineering & Structural Dynamics, 8(3), 197-217.
Xiang, P. and Nishitani, A. (2014). Seismic vibration control of building structures with multiple tuned mass damper floors integrated. Earthquake Engineering & Structural Dynamics, 43(6), 909-925.
Xu, K. and Igusa. (1992). Dynamic characteristics of multiple substructures with closely spaced frequencies. Earthquake Engineering & Structural Dynamics, 21(12), 1059-1070.
Yamaguchi, H. and Harnpornchai, N. (1993). Fundamental characteristics of Multiple Tuned Mass Dampers for suppressing harmonically forced oscillations. Earthquake Engineering & Structural Dynamics, 22(1), 51-62.
李永秀(2005),以統計與最佳化探討等值線性方法,臺灣大學土木工程學研究所學位論文。
楊楚賢(2012),結合有限元素及數學分析套裝軟體之諧調質量阻尼器最佳化分析與設計,臺灣大學土木工程學研究所學位論文。
蕭祥佑(2015),調諧質量阻尼器最佳化設計與效能之探討,臺灣大學土木工程學研究所學位論文。
鍾立來,吳賴雲,賴勇安,連冠華與黃旭輝(2011),以結構位移均方最小化作調諧質塊阻尼器之最佳設計,結構工程,26(4),31-57。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50342-
dc.description.abstract調諧質量阻尼器(Tuned Mass Damper, TMD)是目前常見的一種控制振動的方法,大多用於高層建築、大跨度橋梁以及高科技廠房的機台上,以抗振並提高舒適性。但單一TMD的控制效果對頻率相當敏感,當頻率略偏離設計值時,效果會大幅的下降。並且裝置TMD之結構物往往在地震發生時會有反應放大的情形發生,有學者提出,在地震力的作用下,高層結構可能會有高模態反應的發生,所以分布式多頻調諧質量阻尼器的目的為,不僅僅只控制第一模態,而是利用多個TMD來控制多個欲控制的模態,使得結構在任何頻率的反應下都可以有效的得到控制。
因此本研究團隊提出了分布式多頻調諧質量阻尼器之最佳化設計方法,並針對單自由度TMD與多自由度TMD分別提出適合之演算法,以快速、穩定且精確地得到最佳化設計變數,並且使得TMD最佳化設計結果皆為全域最佳解。
利用本研究之分析架構,以不同樓高之剪力構架模型進行TMD之最佳化,並以白噪音與多筆地震歷時來檢核其減振效果。而為了模擬現實結構中軸向變形發生的情形,也以不同樓高之抗彎構架模型來進行TMD之最佳化,以求得合理之最佳化結果。
zh_TW
dc.description.abstractIn recent year, tuned mass dampers have been widely used to control the vibrations due to wind or earthquake. TMDs are often used in high-rise buildings, long-span bridges and machines of high-tech factory to reduce the vibration and the discomfort.
But the performance of single tuned mass damper (STMD) is sensitive to the frequency of TMD, it suffered a deterioration if the TMD parameters shift away from their optimum solution. Furthermore, the performance of system with TMD sometimes becomes worse when the system is affected by earthquakes. Some researchers point out that high modal responses may be excited when the system is suffered by earthquake. So the object of the distributed multiple tuned mass damper (DMTMD) is that not only control the first mode but also the other important modes. It makes the vibration of system can always be controlled no matter what the excitation frequency is.
In the thesis, we propose the design method of DMTMD, and respectively, give the STMD and the DMTMD appropriate algorithm. It makes the procedure of optimal analysis faster, more stable and more accurate, and the solutions are global minimum.
Using the framework of this thesis, we do the parameter optimization on shear type structures of different story, and use the white-noise and earthquake time histories around the world to examine the performance of DMTMD. In reality, the axial deformation will occur when the structure suffered from earthquake. So we also use moment frame to analysis in order to get a reasonable solution.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:37:01Z (GMT). No. of bitstreams: 1
ntu-105-R03521219-1.pdf: 6296528 bytes, checksum: 8df5d0aacbddc4b053ba683ade4f621c (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 iii
ABSTRACT v
目錄 vii
圖目錄 x
表目錄 xii
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 2
1.3 各章節內容 3
第二章 調諧質量阻尼器簡介 5
2.1 簡介 5
2.2 單自由度主系統 5
2.2.1 加裝單自由度調諧質量阻尼器 5
2.2.2 加裝串聯式調諧質量阻尼器 9
2.2.3 加裝並聯式調諧質量阻尼器 11
2.3 多自由度主系統 13
2.4 多頻式調諧質量阻尼器簡介 16
2.5 分布式多頻調諧質量阻尼器簡介 16
2.6 小結 17
第三章 調諧質量阻尼器最佳化設計 19
3.1 最佳化問題 19
3.2 調諧質量阻尼器之最佳化公式 20
3.2.1 主系統阻尼比為零 20
3.2.2 主系統阻尼比不為零 21
3.3 本研究調諧質量阻尼器最佳化設計 22
3.3.1 設計變數 22
3.3.2 控制變數 24
3.3.3 目標函數 29
3.4 分布式多頻調諧質量阻尼器最佳化設計 31
3.4.1 調諧質量阻尼器個數 31
3.4.2 調諧質量阻尼器放置樓層 32
3.5 小結 32
第四章 最佳化設計軟體與演算法 33
4.1 分析軟體與演算法介紹 33
4.1.1 FMINCON 33
4.1.2 SIMULANNEALBND 34
4.2 演算結果檢核 35
4.2.1 FMINCON 35
4.2.2 SIMULANNEALBND 37
4.3 本研究使用之演算法 42
4.4 數值模擬與理論值之驗證 42
4.5 小結 43
第五章 實例分析結果與討論 45
5.1分布式多頻調諧質量阻尼器之概念 45
5.2 剪力構架 49
5.2.1 最佳化結果 50
5.2.2 目標函數折減率 57
5.2.3 白噪音外力歷時檢核 60
5.2.4 簡諧外力檢核 62
5.2.5 多筆地震歷時檢核 64
5.3 考慮軸向變形之構架 68
5.3.1 最佳化結果 70
5.3.2 多筆地震歷時檢核 73
5.4 小結 75
第六章 結論與未來展望 77
6.1 結論 77
6.2 未來展望 78
參考文獻 79
dc.language.isozh-TW
dc.subject地震歷時檢核zh_TW
dc.subject地震歷時檢核zh_TW
dc.subject抗彎構架zh_TW
dc.subject調諧質量阻尼器zh_TW
dc.subject最佳化zh_TW
dc.subject最佳化zh_TW
dc.subject調諧質量阻尼器zh_TW
dc.subject抗彎構架zh_TW
dc.subjectOptimizationen
dc.subjectOptimizationen
dc.subjectMoment Frameen
dc.subjectMoment Frameen
dc.subjectTime Historyen
dc.subjectTime Historyen
dc.subjectTuned Mass Damperen
dc.subjectTuned Mass Damperen
dc.title分布式多頻調諧質量阻尼器最佳化設計與減振效能之探討zh_TW
dc.titleOptimal Design for Distributed Multiple Tuned Mass Dampers and the Performance under Excitationen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee郭世榮,宋裕祺
dc.subject.keyword調諧質量阻尼器,最佳化,抗彎構架,地震歷時檢核,zh_TW
dc.subject.keywordTuned Mass Damper,Optimization,Moment Frame,Time History,en
dc.relation.page82
dc.identifier.doi10.6342/NTU201601507
dc.rights.note有償授權
dc.date.accepted2016-07-30
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
Appears in Collections:土木工程學系

Files in This Item:
File SizeFormat 
ntu-105-1.pdf
  Restricted Access
6.15 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved