Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50329
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝銘鈞(Ming-Jium Shieh)
dc.contributor.authorYuan-Chun Tsaien
dc.contributor.author蔡元鈞zh_TW
dc.date.accessioned2021-06-15T12:36:33Z-
dc.date.available2019-08-03
dc.date.copyright2016-08-03
dc.date.issued2016
dc.date.submitted2016-07-31
dc.identifier.citationREFERENCE
1. Arakawa, Y., DNA topoisomerase I--targeting drugs. Nihon Rinsho, 2015. 73 Suppl 2: p. 174-7.
2. Nygard, S.B., et al., DNA Topoisomerase I Gene Copy Number and mRNA Expression Assessed as Predictive Biomarkers for Adjuvant Irinotecan in Stage II/III Colon Cancer. Clin Cancer Res, 2016. 22(7): p. 1621-31.
3. Goto, K., et al., Combined chemotherapy with cisplatin, etoposide, and irinotecan versus topotecan alone as second-line treatment for patients with sensitive relapsed small-cell lung cancer (JCOG0605): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol, 2016.
4. Woodward, W.A. and R.P. Hill, Cancer Stem Cells. Recent Results Cancer Res, 2016. 198: p. 25-44.
5. Wei, M.F., et al., Autophagy promotes resistance to photodynamic therapy-induced apoptosis selectively in colorectal cancer stem-like cells. Autophagy, 2014. 10(7): p. 1179-92.
6. Gumulec, J., et al., Modulation of induced cytotoxicity of doxorubicin by using apoferritin and liposomal cages. Int J Mol Sci, 2014. 15(12): p. 22960-77.
7. Blazkova, I., et al., Apoferritin modified magnetic particles as doxorubicin carriers for anticancer drug delivery. Int J Mol Sci, 2013. 14(7): p. 13391-402.
8. Xing, R., et al., Characterization and cellular uptake of platinum anticancer drugs encapsulated in apoferritin. J Inorg Biochem, 2009. 103(7): p. 1039-44.
9. Alamodi, A.A., et al., Cancer stem cell as therapeutic target for melanoma treatment. Histol Histopathol, 2016: p. 11791.
10. Schmohl, J.U. and D.A. Vallera, CD133, Selectively Targeting the Root of Cancer. Toxins (Basel), 2016. 8(6).
11. Zacchigna, S., et al., Loss of the cholesterol-binding protein prominin-1/CD133 causes disk dysmorphogenesis and photoreceptor degeneration. J Neurosci, 2009. 29(7): p. 2297-308.
12. Liu, C.Y., et al., UGT1A1*28 polymorphism predicts irinotecan-induced severe toxicities without affecting treatment outcome and survival in patients with metastatic colorectal carcinoma. Cancer, 2008. 112(9): p. 1932-40.
13. Yang, P.S., et al., 1,6-Bis[4-(4-amino-3-hydroxyphenoxy)phenyl] diamantane potentiates in vitro and in vivo antitumor effects of irinotecan on human colorectal cancer cells. Oncol Lett, 2016. 11(5): p. 3551-3557.
14. Sun, J., et al., A novel mouse CD133 binding-peptide screened by phage display inhibits cancer cell motility in vitro. Clin Exp Metastasis, 2012. 29(3): p. 185-96.
15. Zhen, Z., et al., RGD-modified apoferritin nanoparticles for efficient drug delivery to tumors. ACS Nano, 2013. 7(6): p. 4830-7.
16. Bezouska, K., et al., Dimerization of an immunoactivating peptide derived from mycobacterial hsp65 using N-hydroxysuccinimide based bifunctional reagents is critical for its antitumor properties. Bioconjug Chem, 2012. 23(10): p. 2032-41.
17. Zhou, J.Y., et al., Role of CD44high/CD133high HCT-116 cells in the tumorigenesis of colon cancer. Oncotarget, 2016. 7(7): p. 7657-66.
18. Coughlin, J., et al., A simple enzyme-substrate localized conjugation method to generate immobilized, functional glutathione S-transferase fusion protein columns for affinity enrichment. Anal Biochem, 2016. 505: p. 51-8.
19. Heger, Z., et al., Apoferritin applications in nanomedicine. Nanomedicine (Lond), 2014. 9(14): p. 2233-45.
20. Makino, A., et al., Effective encapsulation of a new cationic gadolinium chelate into apoferritin and its evaluation as an MRI contrast agent. Nanomedicine, 2011. 7(5): p. 638-46.
21. Krieg, R.C., et al., Protein quantification and its tolerance for different interfering reagents using the BCA-method with regard to 2D SDS PAGE. J Biochem Biophys Methods, 2005. 65(1): p. 13-9.
22. Levi, F., et al., Pharmacokinetics of Irinotecan, Oxaliplatin and 5-Fluorouracil During Hepatic Artery Chronomodulated Infusion: A Translational European OPTILIV Study. Clin Pharmacokinet, 2016.
23. Li, L., L. Zhang, and M. Knez, Comparison of two endogenous delivery agents in cancer therapy: Exosomes and ferritin. Pharmacol Res, 2016. 110: p. 1-9.
24. Song, X., et al., Construction of cTnC-linker-TnI (P) Genes, Expression of Fusion Protein and Preparation of Lyophilized Protein. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi, 2015. 32(6): p. 1267-72.
25. Truffi, M., et al., Ferritin nanocages: A biological platform for drug delivery, imaging and theranostics in cancer. Pharmacol Res, 2016. 107: p. 57-65.
26. Hong, I., et al., Expression of the Cancer Stem Cell Markers CD44 and CD133 in Colorectal Cancer: An Immunohistochemical Staining Analysis. Ann Coloproctol, 2015. 31(3): p. 84-91.
27. Khorshidi, A., P. Dhaliwal, and B.B. Yang, Noncoding RNAs in Tumor Angiogenesis. Adv Exp Med Biol, 2016. 927: p. 217-41.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50329-
dc.description.abstract臨床上對於大腸直腸癌的治療,除了手術之外,搭配化療藥物,是最常見的方式。然而,復發的情形,時有所聞,這被認為與癌症類幹細胞有關。在這些化療藥物中,抗癌妥(Irinotecan)是其中的用藥之一,是一種作用於DNA topoisomerase I[1, 2]之專一性抑制劑的抗腫瘤藥物。在大多數的身體組織內,它會經carboxylesterase代謝成SN-38。SN-38作用於純化之DNA topoisomerase I比Irinotecan更具活性。然而,SN-38的毒性相當強,容易任意毒殺正常的細胞,且SN-38並非水溶性的藥物,不適用直接用在人體身上。因此,在這篇論文中,選擇具水溶性的CPT-11作為化療藥物。除了具有毒殺腫瘤細胞的功能外,如果我們以針對癌症類幹細胞作為目標,則可以有效的遏止復發的可能性,進而達到治癒的效果。
為了達到針對腫瘤幹細胞治療,我選擇以CD133抗原作為目標。在許多研究中指出,癌症幹細胞的CD133表現量特別的明顯。為了模擬癌症幹細胞的表面抗原表現,我選用大腸直腸癌HCT-116細胞株(CD133 over-expression)作為模型。
蛋白質載體是一種新型的材料,在我的研究中,選擇脫鐵蛋白(apoferritin)它是由24個亞基組成的球狀蛋白。脫鐵蛋白會在中性環境下自我形成中空奈米載體,具外徑12nm以及內徑8nm的奈米性質,使得其擁有更好的循環半衰期。在酸性(pH值 = 2)的環境下脫鐵蛋白會崩解,形成24個亞基,這個過程是可逆的反應,將pH值調回7.4時,脫鐵蛋白回到原本的球體型態。藉著這樣的方式,可將藥物包在其中。除此之外,我在蛋白質上,用麩胺酸以及天門冬胺酸接上CD133的專一附著之胜肽鏈,做為針對具CD133表面抗原的細胞株,以達到針對治療的效果。
zh_TW
dc.description.abstractIt is common that we combine chemotherapy with surgery for colorectal cancer clinically. However, we can find out several recurrence cases in some time, and it is thought to be related with cancer-stem like cells. In these drugs we use on chemotherapy, irinotecan is one of the used-drug for colorectal cancer. It is the drug that plays on DNA topoisomerase I specific prohibited anti-cancer drug. In most our organs, irinotecan metabolizes to SN-38 through carboxylesterase. SN-38 is more powerful on inhibiting DNA topoisomerase I than irinotecan. It is because of its toxicity on normal cells and of its hydrophobic characteristic that we can’t use SN-38 in human body without other assisted materials. In this study, I choose hydrophilic drug, irinotecan, as chemotherapeutic drug. If I can target on cancer stem-like cells and kill them, I can minimize the recurrence rate and make the treatment more efficiency.
In order to achieve the aim of targeting cancer stem-like cells and having some treatment on them, I choose CD133 marker as the target site. It is pointed out that CD133 marker presents obviously on cancer stem-like cells in many researches. For imitating the surface antibody on cancer stem-like cells, I choose colorectal cancer cells, HCT-116 (CD133 over-expression), as my model.
Protein cage is a novel material. I choose apoferritin in my study. It is a sphere shape parotein composed of 24 subunits. Apoferritin can form a hollow nanoparticle in neutral environment, which is 12 nm in the exterior and 8 nm in the interior of protein. It is because of the nano-character that apoferritin has better circulation period in body. Apoferritin will discompose to 24 subunits in pH 2, and it will re-compose to sphere shape after turning pH back to neutral environment. Through this process, I can encapsulate drug into apoferritin. Besides, I graft CD133 specific-binding peptide to glutamic acid and asparatic acid on the surface of apoferritin so that it can target on CD133 over-expression cell line and get the effect of targeting treatment.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:36:33Z (GMT). No. of bitstreams: 1
ntu-105-R03548007-1.pdf: 2278076 bytes, checksum: 462c9b95626eb4f644513d088d2bf468 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontentsCONTENTS
口試委員審定書............................................................................................................ i
致謝............................................................................................................................... ii
中文摘要.......................................................................................................................iii
ABSTRACT................................................................................................................. iv
CONTENTS................................................................................................................. vi
LIST OF SCHEMES....................................................................................................ix
LIST OF TABLES........................................................................................................ix
LIST OF FIGURES......................................................................................................ix
Chapter 1 Introduction...................................................................................................1
1.1Clinical treatment for colorectal cancer.....................................................................1
1.2 Apoferritin and its characteristic..............................................................................1
1.3 Cancer stem cell.......................................................................................................2
1.4 CD133 marker..........................................................................................................2
1.5 CPT-11(irinotecan)...................................................................................................3
1.6 Aim...........................................................................................................................3
Chapter 2 Materials and Methods..................................................................................4
2.0 Experiment procedure..............................................................................................4
2.1 Materials...................................................................................................................4
2.2 Conjugate FITC-CD133 peptide onto apoferritin....................................................4
2.3 Encapsulation of CPT-11 into APO-CD133.............................................................5
2.4 Characterization of APO and APO(CPT-11)-CD133...............................................6
2.5 Stability of APO(CPT-11)-CD133...........................................................................6
2.6 Drug releasing profile of APO(CPT-11)-CD133......................................................6
2.7 Cell culture...............................................................................................................7
2.8 Expression of CD133 marker in different cell lines.................................................7
2.9 Binding affinity of APO(CPT-11)-CD133 onto cells...............................................8
2.10 Cellular uptake.......................................................................................................8
2.11 In vitro cytotoxicity................................................................................................9
2.12 Colony formation...................................................................................................9
2.13 Pharmacokinetics.................................................................................................10
2.14 In vivo, growth inhibition studies of tumors........................................................10
2.15 Biodistribution......................................................................................................11
2.16 H&E staining........................................................................................................11
Chapter 3 Results.........................................................................................................12
3.0 Icons of each carrier types and their symbols……………………………………12
3.1 Conjugate FITC-CD133_peptide onto apoferritin.................................................12
3.2 Encapsulation of CPT-11 into APO-CD133...........................................................12
3.3 Characterization of APO and APO(CPT-11)-CD133.............................................13
3.4 Stability of APO(CPT-11)-CD133..........................................................................13
3.5 Drug releasing profile of APO(CPT-11)-CD133....................................................14
3.6 Expression of CD133 marker in different cell lines...............................................14
3.7 Binding affinity of APO(CPT-11)-CD133 onto cells.............................................14
3.8 Cellular uptake.......................................................................................................15
3.9 In vitro cytotoxicity................................................................................................15
3.10 Colony formation.................................................................................................16
3.11 Pharmacokinetics..................................................................................................16
3.12 In vivo, growth inhibition studies of tumors........................................................16
3.13 Biodistribution......................................................................................................17
3.14 H&E staining........................................................................................................18
Chapter 4 Conclusions and Discussions.......................................................................19
4.1 Conclusions............................................................................................................19
4.2Discussions..............................................................................................................19
REFERENCE...............................................................................................................21












LIST OF SCHEMES
Scheme 1. Icons of each carrier types and their symbols……………………………23
Scheme2. The procedure of composing and forming APO(CPT-11)-CD133 ............24
LIST OF TABLES
Table 1. CD133 specific-binding peptide conjugated apoferritin................................25
Table 2. The rate of CPT-11 encapsulated in apoferritin..............................................25
Table 3. Size and zeta potential of apoferritin and APO(CPT-11)-CD133 measured by
DLS................................................................................................................26
Table 4. Drug released from APO(CPT-11)-CD133 by the time passed......................26
LIST OF FIGURES
Figure 1. Images measured by transmission electron micrograph (a)Apoferritin
(b)APO(CPT-11)-CD133 and the size distribution images measured by
(c)Apoferritin (d) APO(CPT-11)-CD133.......................................................27
Figure 2. Stability of APO(CPT-11)-CD133 (a) PDI of APO(CPT-11)-CD133 (b)size
of APO(CPT-11)-CD133................................................................................28
Figure 3. Drug releasing profile of APO(CPT-11)-CD133 at different conditions......29
Figure 4. CD133 performance of different cell lines analyzed by flow cytometer
(a)HT-29 (b)SW620 (c)HCT-116(d)HCT-116 (K.O. CD133)........................30
Figure 5. Expression of CD133 on different cell lines by western blot.......................30
Figure 6. Binding affinity of APO(CPT-11)-CD133 on different cell lines analyzed by
flow cytometer (a)HT-29 (b)SW620 (c)HCT-116 (d)HCT-116(K.O.
CD133). .........................................................................................................31
Figure 7. Cellular uptake of different drug types to different cell lines measured by
detecting the florescence of CPT-11(a)combination (b)HCT-116 (c)HT-29
(d)SW620(e)HCT-116(K.O. CD133).............................................................32
Figure 8. IC50 of different drug types on different cell lines analyzed by MTT assay
(a)SW620 (b)HT-29 (c)HCT-116 (d)HCT-116(K.O. CD133) (e)sorted out to be a chart...............................................................................................................33
Figure 9. Colony formation after treated with (a)control (b)CPT-11, (c)APO(CPT-11)
and (d)APO(CPT-11)-CD133. (e)after normalizing control to 1000 and
compare to other groups...................................................................................34
Figure 10. Pharmacokinetics measured by collection blood from nude mice after
intravenous injection of CPT-11 or APO(CPT-11)-CD133 into different
mice................................................................................................................35
Figure11. In vivo tumor growth inhibition after tumors growth up to 100mm3 and
intravenous treatment of no treatment(control), APO-CD133, CPT-11,
APO(CPT-11), APO(CPT-11)-CD133 in different groups (a)tumor size
(b)weight changes............................................................................................36
Figure 12.biodistribution after intravenous injection of APO(CPT-11)-CD133 or
CPT-11 into nude mice, and sacrifice them at 24 and 48 hour respectively...37
Figure 13. H&E staining after sacrificing one mouse for each group. (a)Heart (b)
Liver (c)Spleen (d)Lung (e)Kidney. The order of each subfigure follows : Control, APO-CD133, CPT-11, APO(CPT-11), APO(CPT-11)-CD133 from left to right and top to bottom…….………………………………………………38
dc.language.isoen
dc.subject脫鐵蛋白zh_TW
dc.subject抗癌妥zh_TW
dc.subject人類大腸直腸癌zh_TW
dc.subject針對治療zh_TW
dc.subjectCD133表面抗原zh_TW
dc.subjectApoferritinen
dc.subjectCD133 surface antibodyen
dc.subjectCPT-11en
dc.subjecttargeting treatmenten
dc.subjectCPT-11en
dc.subjectApoferritinen
dc.subjectCD133 surface antibodyen
dc.subjectHuman colorectal canceren
dc.subjectHuman colorectal canceren
dc.subjecttargeting treatmenten
dc.title將化療藥物包覆於CD133專一附著之胜肽鏈修飾之蛋白質載體用於標靶治療zh_TW
dc.titleEncapsulation of CPT-11 into CD133 specific-binding peptide Modified Apoferritin for Targeted Delivery to
Colorectal Cancer Stem Cell
en
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林文澧(Wen-Li Lin),張富雄(Fu-Hsiung Chang),駱俊良(Chun-Liang Lo),胡尚秀(Shang-Hsiu Hu)
dc.subject.keyword脫鐵蛋白,人類大腸直腸癌,CD133表面抗原,針對治療,抗癌妥,zh_TW
dc.subject.keywordApoferritin,Human colorectal cancer,CD133 surface antibody,targeting treatment,CPT-11,en
dc.relation.page39
dc.identifier.doi10.6342/NTU201601625
dc.rights.note有償授權
dc.date.accepted2016-07-31
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
2.22 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved