請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50325完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃建璋 | |
| dc.contributor.author | Shin-Yi Ho | en |
| dc.contributor.author | 何昕逸 | zh_TW |
| dc.date.accessioned | 2021-06-15T12:36:24Z | - |
| dc.date.available | 2019-08-03 | |
| dc.date.copyright | 2016-08-03 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-07-29 | |
| dc.identifier.citation | Reference
[1] M. T. Hasan, 'Mechanism and Suppression of Current Collapse in AlGaN/GaN High Electron Mobility Transistors,' University of Fukui, 2013. [2] Y. Uemoto, M. Hikita, H. Ueno, H. Matsuo, H. Ishida, M. Yanagihara, et al., 'Gate injection transistor (GIT)—A normally-off AlGaN/GaN power transistor using conductivity modulation,' IEEE Transactions on Electron Devices, vol. 54, pp. 3393-3399, 2007. [3] K. Ota, K. Endo, Y. Okamoto, Y. Ando, H. Miyamoto, and H. Shimawaki, 'A normally-off GaN FET with high threshold voltage uniformity using a novel piezo neutralization technique,' in 2009 IEEE International Electron Devices Meeting (IEDM), 2009, pp. 1-4. [4] O. Hilt, A. Knauer, F. Brunner, E. Bahat-Treidel, and J. Würfl, 'Normally-off AlGaN/GaN HFET with p-type Ga Gate and AlGaN buffer,' in 2010 22nd International Symposium on Power Semiconductor Devices & IC's (ISPSD), 2010, pp. 347-350. [5] S. L. Selvaraj, K. Nagai, and T. Egawa, 'MOCVD grown normally-OFF type AlGaN/GaN HEMTs on 4 inch Si using p-InGaN cap layer with high breakdown,' in Device Research Conference (DRC), 2010, 2010, pp. 135-136. [6] O. Hilt, F. Brunner, E. Cho, A. Knauer, E. Bahat-Treidel, and J. Würfl, 'Normally-off high-voltage p-GaN gate GaN HFET with carbon-doped buffer,' in 2011 IEEE 23rd International Symposium on Power Semiconductor Devices and ICs, 2011, pp. 239-242. [7] W. Chen, K.-Y. Wong, and K. J. Chen, 'Monolithic integration of lateral field-effect rectifier with normally-off HEMT for GaN-on-Si switch-mode power supply converters,' in 2008 IEEE International Electron Devices Meeting, 2008, pp. 1-4. [8] R. Wang, P. Saunier, X. Xing, C. Lian, X. Gao, S. Guo, et al., 'Gate-recessed enhancement-mode InAlN/AlN/GaN HEMTs with 1.9-A/mm drain current density and 800-mS/mm transconductance,' IEEE Electron Device Letters, vol. 31, pp. 1383-1385, 2010. [9] T. Oka and T. Nozawa, 'AlGaN/GaN recessed MIS-gate HFET with high-threshold-voltage normally-off operation for power electronics applications,' IEEE Electron Device Letters, vol. 29, pp. 668-670, 2008. [10] K. Boutros, S. Burnham, D. Wong, K. Shinohara, B. Hughes, D. Zehnder, et al., 'Normally-off 5A/1100V GaN-on-silicon device for high voltage applications,' in 2009 IEEE International Electron Devices Meeting (IEDM), 2009, pp. 1-3. [11] R. Vetury, N. Q. Zhang, S. Keller, and U. K. Mishra, 'The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs,' IEEE Transactions on Electron Devices, vol. 48, pp. 560-566, 2001. [12] B. Jogai, 'Influence of surface states on the two-dimensional electron gas in AlGaN/GaN heterojunction field-effect transistors,' Journal of applied physics, vol. 93, pp. 1631-1635, 2003. [13] M. T. Hasan, T. Asano, H. Tokuda, and M. Kuzuhara, 'Current collapse suppression by gate field-plate in AlGaN/GaN HEMTs,' IEEE Electron Device Letters, vol. 34, pp. 1379-1381, 2013. [14] G. Yu, Y. Wang, Y. Cai, Z. Dong, C. Zeng, and B. Zhang, 'Dynamic characterizations of AlGaN/GaN HEMTs with field plates using a -gate structure,' IEEE Electron Device Letters, vol. 34, pp. 217-219, 2013. [15] H. Huang, Y. C. Liang, G. S. Samudra, T.-F. Chang, and C.-F. Huang, 'Effects of gate field plates on the surface state related current collapse in AlGaN/GaN HEMTs,' IEEE Transactions on Power Electronics, vol. 29, pp. 2164-2173, 2014. [16] T. Katsuno, M. Kanechika, K. Itoh, K. Nishikawa, T. Uesugi, and T. Kachi, 'Improvement of current collapse by surface treatment and passivation layer in p-GaN gate GaN high-electron-mobility transistors,' Japanese Journal of Applied Physics, vol. 52, p. 04CF08, 2013. [17] I. Hwang, J. Kim, S. Chong, H.-S. Choi, S.-K. Hwang, J. Oh, et al., 'Impact of channel hot electrons on current collapse in AlGaN/GaN HEMTs,' IEEE Electron Device Letters, vol. 34, pp. 1494-1496, 2013. [18] S. Arulkumaran, T. Egawa, H. Ishikawa, and T. Jimbo, 'Comparative study of drain-current collapse in AlGaN/GaN high-electron-mobility transistors on sapphire and semi-insulating SiC,' Applied physics letters, vol. 81, pp. 3073-3075, 2002. [19] N. G. Weimann, M. J. Manfra, and T. Wachtler, 'Unpassivated AlGaN-GaN HEMTs with minimal RF dispersion grown by plasma-assisted MBE on semi-insulating 6H-SiC substrates,' IEEE Electron Device Letters, vol. 24, pp. 57-59, 2003. [20] S. Arulkumaran, T. Hibino, T. Egawa, and H. Ishikawa, 'Current collapse-free i-GaN/AlGaN/GaN high-electron-mobility transistors with and without surface passivation,' Applied physics letters, vol. 85, pp. 5745-5747, 2004. [21] A. Wells, M. Uren, R. Balmer, K. Hilton, T. Martin, and M. Missous, 'Direct demonstration of the ‘virtual gate’mechanism for current collapse in AlGaN/GaN HFETs,' Solid-state electronics, vol. 49, pp. 279-282, 2005. [22] D. M. Sathaiya and S. Karmalkar, 'Thermionic trap-assisted tunneling model and its application to leakage current in nitrided oxides and AlGaN/ GaN high electron mobility transistors,' Journal of applied physics, vol. 99, p. 093701, 2006. [23] S. Sudharsanan and S. Karmalkar, 'Modeling of the reverse gate leakage in AlGaN/GaN high electron mobility transistors,' Journal of Applied Physics, vol. 107, p. 064501, 2010. [24] K. Hayashi, Y. Yamaguchi, T. Oishi, H. Otsuka, K. Yamanaka, M. Nakayama, et al., 'Mechanism study of gate leakage current for AlGaN/GaN high electron mobility transistor structure under high reverse bias by thin surface barrier model and technology computer aided design simulation,' Japanese Journal of Applied Physics, vol. 52, p. 04CF12, 2013. [25] Y.-W. Lian, Y.-S. Lin, H.-C. Lu, Y.-C. Huang, and S. S. Hsu, 'Drain E-Field Manipulation in AlGaN/GaN HEMTs by Schottky Extension Technology,' IEEE Transactions on Electron Devices, vol. 62, pp. 519-524, 2015. [26] S. Huang, Q. Jiang, S. Yang, C. Zhou, and K. J. Chen, 'Effective passivation of AlGaN/GaN HEMTs by ALD-grown AlN thin film,' IEEE Electron Device Letters, vol. 33, pp. 516-518, 2012. [27] M. Wang, Y. Wang, C. Zhang, B. Xie, C. P. Wen, J. Wang, et al., '900 V/1.6 Normally Off MOSFET on Silicon Substrate,' IEEE Transactions on Electron Devices, vol. 61, pp. 2035-2040, 2014. [28] Y. Cai, Y. Zhou, K. M. Lau, and K. J. Chen, 'Control of threshold voltage of AlGaN/GaN HEMTs by fluoride-based plasma treatment: from depletion mode to enhancement mode,' IEEE transactions on electron devices, vol. 53, pp. 2207-2215, 2006. [29] K.-W. Kim, S.-D. Jung, D.-S. Kim, H.-S. Kang, K.-S. Im, J.-J. Oh, et al., 'Effects of TMAH Treatment on Device Performance of Normally Off MOSFET,' IEEE electron device letters, vol. 32, pp. 1376-1378, 2011. [30] X. Qin, H. Dong, B. Brennan, A. Azacatl, J. Kim, and R. M. Wallace, 'Impact of N2 and forming gas plasma exposure on the growth and interfacial characteristics of Al2O3 on AlGaN,' Applied Physics Letters, vol. 103, p. 221604, 2013. [31] N.-H. Lee, M. Lee, W. Choi, D. Kim, N. Jeon, S. Choi, et al., 'Effects of various surface treatments on gate leakage, subthreshold slope, and current collapse in AlGaN/GaN high-electron-mobility transistors,' Japanese Journal of Applied Physics, vol. 53, p. 04EF10, 2014. [32] S. Yang, Z. Tang, K.-Y. Wong, Y.-S. Lin, C. Liu, Y. Lu, et al., 'High-Quality Interface in MIS Structures With In Situ Pre-Gate Plasma Nitridation,' IEEE Electron Device Letters, vol. 34, pp. 1497-1499, 2013. [33] K. J. Chen, S. Yang, Z. Tang, S. Huang, Y. Lu, Q. Jiang, et al., 'Surface nitridation for improved dielectric/III‐nitride interfaces in GaN MIS‐HEMTs,' physica status solidi (a), vol. 212, pp. 1059-1065, 2015. [34] L.-Y. Su, F. Lee, and J. J. Huang, 'Enhancement-mode GaN-based high-electron mobility transistors on the Si substrate with a P-type GaN cap layer,' IEEE Transactions on Electron Devices, vol. 61, pp. 460-465, 2014. [35] F. Lee, L.-Y. Su, C.-H. Wang, Y.-R. Wu, and J. Huang, 'Impact of gate metal on the performance of p-GaN/AlGaN/GaN high electron mobility transistors,' IEEE Electron Device Letters, vol. 36, pp. 232-234, 2015. [36] C.-H. Wang, S.-Y. Ho, and J. J. Huang, 'Suppression of Current Collapse in Enhancement-Mode AlGaN/GaN High Electron Mobility Transistors,' IEEE Electron Device Letters, vol. 37, pp. 74-76, 2016. [37] E. Bahat-Treidel, O. Hilt, F. Brunner, J. Wurfl, and G. Trankle, 'Punchthrough-voltage enhancement of AlGaN/GaN HEMTs using AlGaN double-heterojunction confinement,' IEEE Transactions on Electron Devices, vol. 55, pp. 3354-3359, 2008. [38] F. Medjdoub, M. Zegaoui, B. Grimbert, N. Rolland, and P.-A. Rolland, 'Effects of AlGaN back barrier on AlN/GaN-on-silicon high-electron-mobility transistors,' Applied Physics Express, vol. 4, p. 124101, 2011. [39] F. Benkhelifa, S. Müller, V. Polyakov, and O. Ambacher, 'Normally-Off AlGaN/GaN/AlGaN Double Heterostructure FETs With a Thick Undoped GaN Gate Layer,' IEEE Electron Device Letters, vol. 36, pp. 905-907, 2015. [40] D. S. Lee, X. Gao, S. Guo, and T. Palacios, 'InAlN/GaN HEMTs with AlGaN back barriers,' IEEE Electron Device Letters, vol. 32, pp. 617-619, 2011. [41] Y.-L. Hsiao, C.-A. Chang, E. Y. Chang, J.-S. Maa, C.-T. Chang, Y.-J. Wang, et al., 'Material growth and device characterization of AlGaN/GaN single-heterostructure and AlGaN/GaN/AlGaN double-heterostructure field effect transistors on Si substrates,' Applied Physics Express, vol. 7, p. 055501, 2014. [42] N. Maeda, T. Saitoh, K. Tsubaki, T. Nishida, and N. Kobayashi, 'Enhanced effect of polarization on electron transport properties in AlGaN/GaN double-heterostructure field-effect transistors,' Applied Physics Letters, vol. 76, pp. 3118-3120, 2000. [43] N. Maeda, T. Saitoh, K. Tsubaki, T. Nishida, and N. Kobayashi, 'Two-dimensional electron gas transport properties in AlGaN/GaN single-and double-heterostructure field effect transistors,' Materials Science and Engineering: B, vol. 82, pp. 232-237, 2001. [44] H. Kambayashi, T. Nomura, H. Ueda, K. Harada, Y. Morozumi, K. Hasebe, et al., 'High quality SiO2/Al2O3 gate stack for GaN metal–oxide–semiconductor field-effect transistor,' Japanese Journal of Applied Physics, vol. 52, p. 04CF09, 2013. [45] M. Hatano, Y. Taniguchi, S. Kodama, H. Tokuda, and M. Kuzuhara, 'Reduced gate leakage and high thermal stability of AlGaN/GaN MIS-HEMTs using ZrO2/Al2O3 gate dielectric stack,' Applied Physics Express, vol. 7, p. 044101, 2014. [46] N. Maeda, T. Saitoh, K. Tsubaki, T. Nishida, and N. Kobayashi, 'Enhanced electron mobility in AlGaN/InGaN/AlGaN double-heterostructures by piezoelectric effect,' Japanese journal of applied physics, vol. 38, p. L799, 1999. [47] E. Peng, X. Wang, H. Xiao, C. Wang, H. Yin, H. Chen, et al., 'Bipolar characteristics of AlGaN/AlN/GaN/AlGaN double heterojunction structure with AlGaN as buffer layer,' Journal of Alloys and Compounds, vol. 576, pp. 48-53, 2013. [48] C. Chen, J. Zhang, V. Adivarahan, A. Koudymov, H. Fatima, G. Simin, et al., 'AlGaN/GaN/AlGaN double heterostructure for high-power III-N field-effect transistors,' Applied physics letters, vol. 82, pp. 4593-4595, 2003. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50325 | - |
| dc.description.abstract | 氮化鋁鎵/氮化鎵高電子遷移率電晶體擁有高能帶及高電子遷移率的材料特性,使其大量應用於高電壓電子元件及高效率電源轉換系統。其異質接面所產生的大量二維電子氣提供元件大電流、低阻抗之元件特性,因而近年來越來越被重視。然而當元件在高速切換下,材料缺陷所造成的漏電流以及電流坍塌現象使得電晶體無法達到所預期之高效率電能轉換。本研究致力於增強型氮化鋁鎵/氮化鎵高電子遷移率電晶體之研發及其動態電特性之分析。
本論文利用電漿輔助化學氣相沉積系統所沉積出的二氧化矽薄膜作為電晶體的鈍化層,藉此探討電流坍塌現象於p型氮化鎵高電子遷移率電晶體的影響與機制。實驗發現擁有二氧化矽鈍化層的電晶體有較優異的電流坍塌抗性。透過量測分析驗證鈍化層的內部缺陷提供額外的電子累積空間,避免電子累積在p型氮化鎵覆蓋層而空乏通道中二維電子氣之載子,有效減緩電流坍塌現象。 為了發展金氧半結構並達到元件特性最佳化,尤其直接影響電流坍塌現象的閘極漏電流,優良的材料介面品質為首要之條件,因此文中分別對於空乏型及增強型高電子遷移率電晶體,提出不同的介面處理包含氟離子電漿處理、氬氣及氮氣電漿轟擊以應用於將來金氧半結構介面品質之提升。 根據先前研究氮化鋁鎵/氮化鎵高電子遷移率電晶體的實驗經驗,我們發展金氧半結構並探討其電性,發現藉由原子層沉積系統所沉積出的氧化鋁能夠成功鈍化p型氮化鎵表面受到電漿轟擊所留下的缺陷,抑制長脈衝下的電流坍塌現象,進一步分析單、雙異質結構對於電性的影響及抑制電流坍塌效應之能力,發展出有效利用於p型氮化鎵金氧半高電子遷移率電晶體轉換效率提升之方法。 | zh_TW |
| dc.description.abstract | The applications of gallium nitride high electron mobility transistors (GaN HEMTs) have become more and more important in recent years. Due to the outstanding material properties including wide-band-gap and high electron mobility, GaN HEMTs are widely applied to high voltage electronics and high efficiency power conversion systems. The two dimensional electron gas (2DEG) formed in heterojunction ensures the large operating output current and low on-resistance of the device. However, the leakage current and current collapse phenomenon concerning to the material defects reduce the power conversion efficiency of the device in high speed switching. In this research, enhancement-mode (E-mode) AlGaN/GaN HEMTs are demonstrated; the electrical characteristics and dynamic characteristics are also investigated.
In this thesis, dynamic output characteristics are analyzed between the conventional p-GaN HEMT and the HEMT with plasma enhanced chemical vapor deposition (PECVD) SiO2 as the passivation. The current collapse can be suppressed effectively in E-mode HEMT with SiO2 due to the extra electron-accumulating space created by passivation. Electrons that used to accumulate in p-GaN capping layer and deplete 2DEG carriers can be neutralized by electron-accumulating space formed in SiO2. In order to construct metal-insulator-semiconductor (MIS)-HEMTs with optimized performance, high quality of layer interface is the critical factor of current collapse suppression and gate leakage minimization. We propose surface treatments including fluorine plasma, argon plasma and nitrogen plasma to improve interface quality. Based on our previous experience of developing AlGaN/GaN HEMTs, we construct MIS structures with atomic layer deposition (ALD) Al2O3. The Al2O3 can passivate the surface defects formed by plasma bombardment and suppress current collapse in long pulse mode. Also, we investigate the impact of epi structures on electrical characteristics and the phenomenon of current collapse. The power conversion efficiency in p-GaN MIS-HEMTs can be effectively improved by double heterostructure. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T12:36:24Z (GMT). No. of bitstreams: 1 ntu-105-R03941060-1.pdf: 3895559 bytes, checksum: 1bfca25e387e6a81f4b5cb8c18af6bc3 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | Contents
口試委員審定書 i 誌謝 ii 摘要 iii Abstract iv List of Figure viii Chapter 1 Introduction 1 1.1 E-mode AlGaN/GaN HEMTs 1 1.2 Phenomenon of Current Collapse 4 1.3 Thesis Outline 7 Chapter 2 E-mode AlGaN/GaN HEMTs 8 2.1 Introduction 8 2.2 Development of E-mode AlGaN/GaN HEMTs 8 2.2.1 Device Structure Design and Fabrication 8 2.2.2 I-V Characteristics and Discussion 10 2.3 Investigations of Current Collapse Phenomenon 13 2.3.1 Measurement Setup 13 2.3.2 Effects of Passivation Layer 15 2.4 Summary 23 Chapter 3 Surface Treatments 24 3.1 Introduction 24 3.2 Study of surface treatments 25 3.2.1 Fabrication 25 3.2.2 Results and Discussion 27 Chapter 4 MIS E-mode AlGaN/GaN HEMTs 29 4.1 Introduction 29 4.2 Development of MIS E-mode AlGaN/GaN HEMTs 29 4.2.1 Device Structure Design and Fabrication 30 4.2.2 I-V Characteristics and Discussion 32 4.3 Investigations of Current Collapse Phenomenon 36 4.3.1 Dynamic characteristics 36 4.3.2 Effect of insulator on current collapse 39 4.3.3 Mechanism of current collapse suppression 42 4.4 Summary 44 Chapter 5 Conclusion 45 Reference 47 | |
| dc.language.iso | en | |
| dc.subject | 高電子遷移率電晶體 | zh_TW |
| dc.subject | p型氮化鎵覆蓋層 | zh_TW |
| dc.subject | 電流坍塌現象 | zh_TW |
| dc.subject | 原子層沉積技術 | zh_TW |
| dc.subject | p型氮化鎵覆蓋層 | zh_TW |
| dc.subject | 雙異質結構 | zh_TW |
| dc.subject | 高電子遷移率電晶體 | zh_TW |
| dc.subject | 電流坍塌現象 | zh_TW |
| dc.subject | 原子層沉積技術 | zh_TW |
| dc.subject | 雙異質結構 | zh_TW |
| dc.subject | double heterostructure | en |
| dc.subject | GaN HEMT | en |
| dc.subject | E-mode | en |
| dc.subject | p-GaN cap layer | en |
| dc.subject | current collapse | en |
| dc.subject | atomic layer deposition (ALD) | en |
| dc.subject | double heterostructure | en |
| dc.subject | GaN HEMT | en |
| dc.subject | E-mode | en |
| dc.subject | p-GaN cap layer | en |
| dc.subject | current collapse | en |
| dc.subject | atomic layer deposition (ALD) | en |
| dc.title | 增強型氮化鋁鎵/氮化鎵高電子遷移率電晶體製作與電流崩潰特性分析 | zh_TW |
| dc.title | Fabrication and Current Collapse Characterizations of Enhancement-Mode AlGaN/GaN High Electron Mobility Transistors | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊志忠,郭浩中,洪瑞華,賴韋志 | |
| dc.subject.keyword | 高電子遷移率電晶體,p型氮化鎵覆蓋層,電流坍塌現象,原子層沉積技術,雙異質結構, | zh_TW |
| dc.subject.keyword | GaN HEMT,E-mode,p-GaN cap layer,current collapse,atomic layer deposition (ALD),double heterostructure, | en |
| dc.relation.page | 50 | |
| dc.identifier.doi | 10.6342/NTU201601630 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-07-31 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 3.8 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
