請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50288
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王慧瑜 | |
dc.contributor.author | Yun-Kae Kiang | en |
dc.contributor.author | 江勻楷 | zh_TW |
dc.date.accessioned | 2021-06-15T12:35:07Z | - |
dc.date.available | 2016-08-24 | |
dc.date.copyright | 2016-08-24 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-08-01 | |
dc.identifier.citation | Arai, T., Marui, M., Miller, M. J., and Tsukamoto, K. 2002. Growth history and inshore migration of the tropical eel, Anguilla marmorata, in the Pacific. Mar Biol 140: 309 – 316.
Arula, T., Ojaveer, H., and Klais, R. 2014. Impact of extreme climate and bioinvasion on temporal coupling of spring herring (Clupea harengus m.) larvae and their prey. Mar Environ Res 102: 102 – 109. Berkeley, S. A., Chapman, C., and Sogard, S. M. 2004. Maternal age as a determinant of larval growth and survival in a marine fish, Sebastes melanops. Ecology 85: 1258 –1264. Blanchard, J. L., Jennings, S., Holmes, R., Harle, J., Merino, G., Allen, J. I., Holt, J.,Dulvy, N. K., and Barange, M. 2012. Potential consequences of climate change for primary production and fish production in large marine ecosystems. Phil Trans R Soc B 367: 2979 – 2989. Blaxter, J. H. S. 1991. The effect of temperature on larval fishes. Neth J Zool 42(2): 336 – 357. Byström, P., and García-Berthou, E. 1999. Density dependent growth and size specific competitive interactions in young fish. OIKOS 86: 217 – 232. Chen, C.-T., 2007. Seasonal variation of primary production and the phytoplankton biomass in the Damshuei River estuary and adjacent coastal area, northern Taiwan. Master thesis. Department of Environmental of Biology and Fisheries Science, College of Ocean Science and Resource, National Taiwan Ocean University. Chern, C. S., Wang, J., and Wang, D. P. 1990. The exchange of Kuroshio and East China Sea shelf water. J Geophys Res 95: 16017 – 16023. Chakraborty, A., Aranishi, F., and Iwatsuki, Y. 2006. Genetic differences among three species of the genus Trichiurus (Perciformes: Trichiuridae) based on mitochondrial DNA analysis. Ichthyol Res 53: 93 – 96. Chang, Y.-C. 2001. Observations of Flow Dynamics in Kaoping Submarine Canyon. Master thesis. Department of Marine Biotechnology and Resources, National Sun Yat-sen University. Chao, C.-F. 2006. Spatial and temporal variation of heterotrophic bacteria, autotrophic cyanobacteria Synechococcus spp. and nanoflagellate in the Ilan Bay northeast Taiwan. Master thesis. Department of Environmental Biology and Fisheries Science, College of Ocean Science and Resource, National Taiwan Ocean University. Chipps, S. R., and Wahl, D. H. 2008. Bioenergetics modeling in the 21st century: reviewing new insights and revisiting old constraints. Trans Am Fish Soc 137(1): 298 – 313. doi: 10.1577/T05-236.1. Chisholm, L. A., and Roff, J. C. 1990. Size-weight relationships and biomass of tropical neritic copepods off Kingston, Jamaica. Mar Biol 106(1): 71 – 77. Chiu, T.-S., Chen, C.-L., and Young, S.-S. 1999. Age and growth of two co-occurred anchovy species (Encrasicholina puntifer and E. heteroloba) during autumn larval anchovy fishing season in I-Ian Bay, NE Taiwan. J Fish Soc Taiwan, 26(4): 183 – 190. Chung, J.-L. 2008. A comparative study on the temporal and spatial variation of micro-zooplankton in the coastal and estuarine ecosystem. Doctoral dissertation. Institute of Oceanography, College of Science, National Taiwan University. Cunningham, M. K., Granberry, W. F., and Pope, K. L. 2000. Shrinkage of inland silverside larvae preserved in ethanol and formalin. N Am J Fish Manage 20: 816–818. Collins, M., R. Knutti, J. Arblaster, J.-L. Dufresne, T. Fichefet, P. Friedlingstein, X. Gao, W.J. Gutowski, T. Johns, G. Krinner, M. Shongwe, C. Tebaldi, A.J. Weaver and M. Wehner, 2013: Long-term Climate Change: Projections, Commitments and Irreversibility. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA Cury, P. M.,Shin, Y.- J.,Planque, B.,Durant, J. M.,Fromentin, J.-M., Kramer-Schadt, S., Stenseth, N. C., Travers1, M., and Grimm, V. 2008. Ecosystem oceanography for global change in fisheries. Trends Ecol Evol 23(6):338 - 346. doi:10.1016/j.tree.2008.02.005. Diana, J. S. 1995. Biology & ecology of fishes. Printed in the United States of America by Cooper Publishing Group LLC, P.O. Box 562, Carmel, IN 46032. Durant, J. M., Hjermann, D. Ø., Ottersen, G., and Stenseth, N. C. 2007. Climate and the match or mismatch between predator requirements and resource availability. Clim Res 33: 271–283. Drinkwater, K. F. 2005. The response of Atlantic cod (Gadus morhua) to future climate change. ICES J Mar Sci 62: 1327 – 1337. Fan, K.-L. 1980. On upwelling off northeastern shore of Taiwan. Acta Oceanogr Taiwan 11: 105 – 117. Fange, R., and Grove, D. 1979. Digestion. Pages 161-260 in W.S. Hoar, D.J. Randall, and J.R. Brett, editors. Fish physiology, Volume 8. Academic Press, New York. Fouzai, N., Opdal, A. F., J?rgensen, C., and Fiksen, Ø. 2015. Effects of temperature and food availability on larval cod survival: a model for behaviour in vertical gradients. Mar Ecol Prog Ser 529: 199 – 212. Fuiman, L. A. 2002. Special considerations of fish eggs and larvae. In Fishery Science: the unique contributions of early life stages (Fuiman, L. A. and Werner, R. G., eds), 1 - 32, Oxford, UK: Blackwell Science. ISBN: 978-0-632-05661-3. Giraldo, A., Escribano, R., and Marin, V. 2002. Spatial distribution of Calanus chilensis off Mejillones Peninsula (northern Chile): ecological consequences upon coastal upwelling. Mar Ecol Prog Ser 230: 225 – 234. Gong, G.-C, Wen, Y.-H., Wang, B.-W., and Liu, G.-J. 2003. Seasonal variation of chlorophyll a concentration, primary production and environmental conditions in the subtropical East China Sea. Deep-Sea Res Pt II 50: 1219 – 1236. Hansen, M. J., Boisclair, D., Brandt, S. B., Hewett, S. W., Kitchell, J. F., Lucas, M.C., and Ney, J. J. 1993. Applications of bioenergetics models to fish ecology and management: where do we go from here? Trans Am Fish Soc 122:5, 1019-1030, doi: 10.1577/1548-8659(1993)122<1019:AOBMTF>2.3.CO;2. He, E., and Wurtsbaugh, W. A. 1993. An empirical model of gastric evacuation rates for fish and an analysis of digestion in piscivorous brown trout. Trans Am Fish Soc 122: 717 - 730. Hirst, A. G., and Lampitt, R. S. 1988. Towards a global model of in situ weight-specific growth in marine planktonic copepods. Mar Biol 132: 247 – 257. Hixon, M. A., Johnson, D. W., and Sogard, S. M. 2014. BOFFFFs: on the importance of conserving old-growth age structure in fishery populations. ICES J Mar Sci 71(8): 2171 - 2185. doi:10.1093/icesjms/fst200. Hoegh-Guldberg, O., and Bruno, J. F. 2010. The impact of climate change on the world’s marine ecosystems. Science 328 (5985): 1523 – 1528. doi: 10.1126/science.1189930. Holling, C. S. 1959. Some characteristics of simple types of predation and parasitism. Can Ent 91(7): 358 – 398. Hollowed, A. B., Barange, M., Beamish, R. J., Brander, K., Cochrane, K., Drinkwater, K., Foreman, M. G. G., Hare, J. A., Holt, J., Ito, S.-i., Kim, S., King, J. R., Loeng, H., MacKenzie, B. R., Mueter, F. J., Okey, T. A., Peck, M. A., Radchenko, V. I., Rice, J. C., Schirripa, M. J., Yatsu. A., and Yamanaka, Y. 2013. Projected impacts of climate change on marine fish and fisheries. ICES J Mar Sci 70(5), 1023 – 1037. doi:10.1093/icesjms/fst081. Houde, E. D. 1989. Comparative growth, mortality, and energetics of marine fish larvae: temperature and implied latitudinal effects. Fish Bull U.S. 87: 471 – 495. Houde, 2008. Emerging from Hjort’s Shadow. J Northw Atl Fish Sci Vol. 41: 53 –70. Hsieh, C.-H., and Chiu, T.-S. 1997. Copepod abundance and species composition of Tanshui River estuary and adjacent waters. Acta Zool Taiwanica 8(2): 75 – 83. Hsieh, C.-H., Chiu, T.-S., and Shih, C.-T. 2004. Copepod diversity and composition as indicators of intrusion of the Kuroshio Branch Current into the northern Taiwan Strait in spring 2000. Zool Stud 43(2): 393 – 403. Hsieh, C.-H., Chen, C.-S., and Chiu, T.-S. 2005. Composition and abundance of copepods and ichthyoplankton in Taiwan Strait (western North Pacific) are influenced by seasonal monsoons. Mar Freshwater Res 56: 153 – 161. Hsiao, S. H., Fang, T.-H., Shih, C.-T., and Hwang, J.-S. 2011. Effects of the Kuroshio Current on copepod assemblages in Taiwan. Zool Stud 50(4): 475 – 490. Hsu, K.-C., Shih, N.-T., Ni, I.-H., and Shao, K.-T. 2009. Speciation and population structure of three Trichiurus species based on Mitochondrial DNA. Zool Stud 48(6): 835 – 849. Huang, H.-H. 2002. Tempo- spatial distribution and feeding of planktonic copepods in Kaoping coastal waters, Taiwan. Master thesis. Department of Marine Biotechnology and Resources, National Sun Yat-sen University. Huang, P.-K. 2006. A study on community structure of copepods in I-Lan Bay of northeastern Taiwan. Master thesis. Department of Environmental of Biology and Fisheries Science, College of Ocean Science and Resource, National Taiwan Ocean University. Huebert, K. B., and Peck, M. A. 2014. A day in the life of fish larvae: modeling foraging and growth using Quirks. PLoS ONE 9(6): e98205. doi:10.1371/journal. pone.0098205. Jan, S., Wang, J., Chern, C.-S., and Chao, S.-Y. 2002. Seasonal variation of the circulation in the Taiwan Strait. J Marine Syst 35: 249 – 268. Jobling, M. 1994. Fish bioenergetics, Published by Chapman & Hall, 2 – 6 Boundary Row, London SE1 8HN. Kamimura, Y., Takahashi, M., Yamashita, N., Watanabe, C., and Kawabata, A. 2015. Larval and juvenile growth of chub mackerel Scomber japonicus in relation to recruitment in the western North Pacific. Fish Sci 81:505–513. doi: 10.1007/s12562-015-0869-4. Kawamura, G., and Munekiyo, M. 1989. Development of the sense organs of ribbonfish Trichiurus lepturus larvae and juveniles. Nippon Suisan Gakk. 55 (12): 2075 – 2078. Kawaguchi, Y., Miyasaka, H., Genkai-Kato, M., Taniguchi, Y., and Nakano, S. 2007. Seasonal change in the gastric evacuation rate of rainbow trout feeding on natural prey. J Fish Biol 71: 1873 – 1878. Knutson, T. R., McBride, J. L., Chan, J., Emanuel, K., Holland, G., Landsea, C., Held, I., Kossin, J. P., Srivastava, A. K., and Sugi, M. 2010. Tropical cyclones and climate change. Nat Geosci 3: 157 - 163. doi: 10.1038/ngeo779 Kvile, K. Ø., Langangen, Ø., Prokopchuk, I., Stenseth, N. C., and Stige, L. C. 2016. Disentangling the mechanisms behind climate effects on zooplankton. Proc Natl Acad Sci USA. 16;113(7):1841-6. doi: 10.1073/pnas.1525130113. Lee, M.-Y. 2009. A study on the biodiversity of copepods in I-Lan Bay of northeastern Taiwan. Master thesis. Department of Environmental of Biology and Fisheries Science, College of Ocean Science and Resource, National Taiwan Ocean University. Leggett, W. C. and Deblois, E. 1994. Recruitment in marine fishes: is it regulated by starvation and predation in the egg and larval stages? Neth J Sea Res 32 (2): 119-134. Liang, W.-D., Tanga, T.Y., Yang, Y.J., Koa, M.T., and Chuang, W.-S. 2003. Upper-ocean currents around Taiwan. Deep-Sea Res Pt II 50: 1085 – 1105. Liao, Z.-H., Hsieh, H.-Y., and Lo, W.-T. 2013. Influence of monsoon-driven hydrographic features on thaliacean distribution in waters around Taiwan, western North Pacific Ocean. Zool Stud 2013:52 – 49. Liu, K.-K., Gong, G.-C., Lin, S., Yang, C.-Y., Wei, C.-L., Pai, S.-C., and Wu, C.-K. 1992. The Year-round upwelling at the shelf break near the northern tip of Taiwan as evidenced by chemical hydrography. TAO 3(3): 243 – 276. Lo, W. T., Hsieh, H. Y., Wu, L. J., Jian, H. B., Liu, D. C., and Su, W. C. 2010. Comparison of larval fish assemblages between during and after northeasterly monsoon in the waters around Taiwan, western North Pacific. J. Plankton Res 32(7): 1079 – 109. Lobel, P. S. 1989. Diel, lunar, and seasonal periodicity in the reproductive behavior of the Pomacanthid fish, Centropyge potteri, and some other reef fishes in Hawaii. Pacific Science 32(2): 193 – 207. Miralao, S. A. 2014. Metabolic rates of embryo and growth of cobia (Rachycentron canadum) and mahi (Coryphaena hippurus) larvae through early juvenile stages. Open Access Theses. University of Miami. pp. 518. Moku, M., Mori, K., and Watanabe, Y. 2004. Shrinkage in the body length of myctophid fish larvae with various preservatives. Copeia 2004(3): 647– 651. Ney, J. J. 1993. Bioenergetics Modeling Today: Growing Pains on the Cutting Edge. Trans Am Fish Soc 122(5) 736 – 748. doi: 10.1577/1548-8659(1993)122<0736:BMTGPO>2.3.CO;2. Nilsson, G. E., Östlund-Nilsson, S., and Munday, P. L. 2010. Effects of elevated temperature on coral reef fishes: loss of hypoxia tolerance and inability to acclimate. Comp Biochem Physiol, Part A 156: 389 –393. Peck, M. A., Huebert, K. B., and Llopiz, J. K. 2012. Intrinsic and extrinsic factors driving match–mismatch dynamics during the early life history of marine fishes. Adv Ecol Res 47: 177 – 302. Pepin, P. 1991. Effect of temperature and size on development, mortality, and survival rates of the pelagic early life history stages of marine fish. Can J Fish Aquat Sci 48: 503 – 518. Pörtner, H. O., and Knust, R. 2007. Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315: 95 – 97. Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C., and Wang, W. 2002. An improved in situ and satellite SST analysis for climate. J Climate 15: 1609 - 1625. Rijnsdorp, A. D., Peck, M. A., Engelhard, G. H., Möllmann, C., and Pinnegar, J. K. 2009. Resolving the effect of climate change on fish populations. ICES J Mar Sci 66: 1570–1583. Rose, K. A., Kimmerer, W. J., Edwards, K. P., and Bennett, W. A. 2013. Individual-based modeling of delta smelt population dynamics in the upper San Francisco estuary: I. model description and baseline results. Trans Am Fish Soc142:5, 1238 – 1259. Rushworth, K. J. W., Smith, S. D. A., Cowden, K. L., and Purcell, S.W. 2011. Optimal temperature for growth and condition of an endemic subtropical anemonefish. Aquaculture 318(3 - 4):479 - 482. doi: 10.1016/j.aquaculture.2011.06.004. Sha, X., Ruan, H., and He, G. 1981. A description of the morphological characteristics of the eggs and larvae of the hairtails, Trichiurus huamela (Forskal) J Fishe China 5: 2. Shepherd, J. G., and Cushing, D. H. 1980. A mechanism for density-dependent survival of larval fish as the basis of a stock-recruitment relationship. J Cons Int Explor Mer 39 (2): 160 – 167. Shih, N.-T., Hsu, K.-C., and Ni, I.-H. 2011. Age, growth and reproduction of cutlassfishes Trichiurus spp. in the southern East China Sea. J Appl Ichthyol 27: 1307 – 1315. Sponaugle, S., Grorud-Colvert, K., and Pinkard, D. 2006. Temperature-mediated variation in early life history traits and recruitment success of the coral reef fish Thalassoma bifasciatumin the Florida Keys. Mar Ecol Prog Ser 308: 1 – 15. Sun, L. and Chen, H. 2014. Effects of water temperature and fish size on growth and bioenergetics of cobia (Rachycentron canadum). Aquaculture 426 - 427: 172 – 180. Tampi, P. R. S., Meenakshisundaram, P. T., Basheeruddin, S., and Gnanamuttu, J. C. 1968. Spawning periodicity of the ribbon fish, Trichiurus lepturus, with a note on its rate of growth. Indian J Fish 15 (1 - 2): 53 - 60. Tanaka, Y., Satoh, K., Iwahashi, M., and Yamada, H. 2006. Growth-dependent recruitment of Pacific bluefin tuna Thunnus orientalis in the northwestern Pacific ocean. Mar Ecol Prog Ser 319: 225–235. Tsai, A.-Y., Gong, G.-C., Chiang, K.-P., Chao, C.-F., Liao, H.-K., and Shiah, F.-K. 2011. Temporal and spatial variations of picoplankton and nanoplankton and short-term variability related to stormy weather in the Danshui River estuary in northern Taiwan. Terr Atmos Ocean Sci 22(1): 79 – 89. Tzeng, W.-N., Chu, H., Shen, K.-N., and Wang, Y.-T. 2008. Hatching period and early-stage growth rate of the gold estuarine anchovy Stolephorus insularis in Taiwan as inferred from otolith daily growth increments. Zool Stud 47(5): 544 – 554. Walsh, W. J. 1987. Patterns of recruitment and spawning in Hawaiian reef fishes. Environ Biol Fishes 18: 257 - 276. doi: 10.1007/BF00004879. Wang, S.-P., Lee, M.-A., and Chen, W.-Y. 2012. Evaluating the uncertainty of the population growth parameter estimates of larval anchovy in the southwestern waters of Taiwan using Monte Carlo simulations. J Mar Sci Tech 20(6): 662 – 669. Watson, A. M., and Holt, G. J. 2010. Energy budget of early juvenile cobia, Rachycentron canadum. J World Aquac Soc 41(S2): 224 – 234. Welker, M. T., Pierce, C. L., and Wahl., D. H. 1994. Growth and survival of larval fishes: roles of competition and zooplankton abundance. Trans Am Fish Soc 123:703 – 717. Wiebe, P. H., and Benfield, M. C. 2003. From the Hensen net towards four-dimensional biological oceanography. Prog Oceanogr 56: 7 –136. Wu, L., Cai, W., Zhang, L., Nakamura, H., Timmermann, A., Joyce, T., McPhaden, M. J., Alexander, M., Qiu, B., Visbeck, M., Chang, P.,and Giese, B. 2012. Enhanced warming over the global subtropical western boundary currents. Natural Clim Change 2: 161 - 166. DOI: 10.1038/NCLIMATE1353 Zenitani, H., and Kimura, R. 1997 Increase in late winter egg production of the Japanese anchovy as related to recovery of the stock size along the Pacific coast of Japan. Nippon Suisan Gakk 63(5): 665 – 671. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50288 | - |
dc.description.abstract | 仔稚魚的成長率攸關存活率以及族群動態,然而亞熱帶魚種的相關研究仍然較少。
許多亞熱帶的魚種產卵季節較長,因此在仔稚魚時期可能經歷不同的成長環境 (如:溫度、食物量)。為了增進對亞熱帶魚種生活史早期的了解,我們以日本帶 魚作為研究物種。日本帶魚是重要的經濟魚種,在台灣沿海(約21.8 – 25.4⁰N, 119.2 – 122.1 ⁰E)全年有產卵的紀錄。而台灣沿岸環境受到季風以及海流的影響, 形成多樣的溫度與生產力關係。我們提出假說認為,溫度與食物量的變化會造成 日本帶魚仔稚魚成長率的變異。我們分析台灣西北、東北與西南沿岸,日本帶魚 仔稚魚成長率、橈足類豐度,以及水溫資料得到以下結論:橈足類豐度在西北部 與溫度呈正相關,但在東北及西南岸無此關係(相關係數r 分別為0.44, 0.15, -0.25)。 日本帶魚仔稚魚(日齡2 至60 天)成長率在西北部也與溫度呈正相關,在東北及 西南沿岸則無明顯溫度趨勢。我們建立生物能量學模型,模擬溫度與橈足類豐度 對帶魚成長的影響,並比較現今溫度下與全球暖化後帶魚的成長率。結果顯示溫 度對帶魚成長率造成的影響在區域間不同,成長率在西北海域隨溫度增加,東北 及西南則無明顯變化,模擬結果與觀察到的平均成長率數值不同但空間趨勢一致。 暖化造成的成長率改變趨勢在區域間也不一致,會增加西北岸成長率,而減少東 北及西南岸成長率。本研究整合實測與模擬的資料,在較小的空間尺度下,印證 了環境因子對日本帶魚生活史早期成長率的不同影響。氣候變遷造成溫度與生產 力的改變,可能影響亞熱帶仔稚魚的成長與入添量,因此也需要在漁業管理中納 入考量。 | zh_TW |
dc.description.abstract | Early life growth rates provide insight on larval survival and determine future
population dynamics. Such knowledge for subtropical fishes, however, is understudied. Subtropical fishes often display prolonged spawning seasons, thus, their larvae may experience differential growing conditions (e.g., temperatures and food availability). To advance current knowledge on early life growth rates for subtropical fishes, we carried out a study based on an important fisheries species, the cutlassfish Trichiurus japonicus, which spawn all year round throughout the coastal water of Taiwan (around 21.8 – 25.4⁰N, 119.2 – 122.1⁰ E). The coastal environments of Taiwan are influenced by differential monsoons and currents, interacting to form variable patterns in temperatures and productivity. We hypothesized that such variable temperature and food abundance could lead to variation in early life growth rates for cutlassfish. We compared growth of larval and early juvenile cutlassfish, copepod abundance (i.e., an index of food availability), and temperature data among the three coasts: NW, NE, and SW coasts, 2000-2015. Copepod abundance was positively correlated with temperature at the NW but not NE or SW coasts (r = 0.44, 0.15, and -0.25, at NW, NE, and SW respectively). Similarly, daily growth rates of cutlassfish (at age = 2-60 days) were positively correlated with temperatures at the NW but not NE or SW coasts. To elucidate the effects of temperature and copepod abundance on fish growth, we constructed a bioenergetics model and compared simulations with the temperature and copepod abundance among three coasts in present-day vs. global warming scenarios. Simulation outputs reflected differential temperature effects on cutlassfish early life growth rates, with similar pattern as our empirical data, but the magnitudes did not match the mean growth rates among coasts. The impacts of climate change on growth also varied among coasts: simulated growth increase at the NW but decrease at NE and SW coasts. Integrating field data and bioenergetics modeling, our study demonstrates diverse environmental effects on early life growth for cutlassfish in subtropical ocean within small spatial scale. Our study provides implications for population dynamics under climate change, which induces anomaly in temperature and food availability, influencing growth and recruitment of fish. Such effects should be considered for fishery management of subtropical marine fishes. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T12:35:07Z (GMT). No. of bitstreams: 1 ntu-105-R03241201-1.pdf: 1350718 bytes, checksum: dca4f090a23374c9b4398b87cd14bff7 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | Contents
Abstract .................................................................................................................................. iii 1. Introduction.................................................................................................................... 1 2. Materials and methods ................................................................................................... 4 2.1 Study area.........................................................................................................4 2.2 Data ..................................................................................................................5 2.3 Analyses ...........................................................................................................9 2.4 A bioenergetics model for the early-staged cutlassfish..................................13 3. Results ............................................................................................................................ 21 3.1 Temperature effects on copepod abundance ..................................................21 3.2 Temperature effects on early life growth rates of T. japonicus......................21 3.3 Simulated early life growth rates of T. japonicus (present-day scenario)......22 3.4 Simulated early life growth rates of T. japonicus (climate change scenario) 23 4. Discussion ...................................................................................................................... 24 4.1 Biological factors that mediate differential temperature effects on growth of early life cutlassfish .............................................................................................24 4.2 Bioenergetics modeling of growth for early life cutlassfish ..........................27 4.3 Potentially impact of climate change on cutlassfish early life growth and recruitment ...........................................................................................................28 4.4 Implications....................................................................................................30 5. References ...................................................................................................................... 31 6. Figures ........................................................................................................................... 46 Figure 1. A map of study areas.............................................................................46 Figure 2. The relationship between the CTD- and satellite-based sea surface temperature (SST)................................................................................................47 Figure 3. An image of early juvenile otolith of cutlassfish..................................48 Figure 4. The relationships between age, total length , and growth rates............49 Figure 5. The estimated consumption energy and total lengths of the early life cutlassfish.............................................................................................................50 Figure 6. Scatterplots of copepod abundance vs. CTD-based sea surface temperature (SST) data, empirical relative growth rates vs. satellite-based SST,and simulated growth at day 60 for cutlassfish vs. satellite-based SST at three coasts....................................................................................................................51 Figure 7. Simulated cutlassfish length at day 60 under climate change at the three coasts:...................................................................................................................52 Figure 8. The relationship between the estimated biomass of zooplankton and sea surface temperature (SST). ..................................................................................53 7. Tables ............................................................................................................................. 54 Table 1. Summary of temperature data among three coasts ................................54 Table 2. Summary of data on copepod abundance at the three coasts of Taiwan 55 Table 3. Summary of samples of the early life-staged cutlassfish. ......................56 Table 4. Selected cutlassfish samples from the NW coast for estimating maximum consumption (Cmax) and its changes with temperature (CmaxT). .....57 8. Appendix ........................................................................................................................ 58 | |
dc.language.iso | en | |
dc.title | 溫度與橈足類豐度對亞熱帶仔稚魚成長率的影響:
以日本帶魚為例 | zh_TW |
dc.title | Complex effects of temperature and copepod abundance
on early life growth of subtropical fishes: based on cutlassfish Trichiurus japonicus | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 丘臺生,謝泓諺 | |
dc.subject.keyword | 日本帶魚,仔稚魚,亞熱帶,生物能量學模型, | zh_TW |
dc.subject.keyword | cutlassfish,early life history,subtropical,bioenergetics model, | en |
dc.relation.page | 60 | |
dc.identifier.doi | 10.6342/NTU201601726 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-08-01 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 海洋研究所 | zh_TW |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 1.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。