Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50243
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor游文岳(Wen-Yueh Yu)
dc.contributor.authorYu-Hsiang Wangen
dc.contributor.author王鈺翔zh_TW
dc.date.accessioned2021-06-15T12:33:40Z-
dc.date.available2025-07-31
dc.date.copyright2020-08-14
dc.date.issued2020
dc.date.submitted2020-08-12
dc.identifier.citation[1] H. Noh, Y. X. Cui, A. W. Peters, D. R. Pahls, M. A. Ortuno, N. A. Vermeulen, C. J. Cramer, L. Gagliardi, J. T. Hupp, and O. K. Farha. 'An Exceptionally Stable Metal-Organic Framework Supported Molybdenum(Vi) Oxide Catalyst for Cyclohexene Epoxidation.' J. Am. Chem. Soc., 2016, 138, 14720-14726.
[2] H. Furukawa, K. E. Cordova, M. O’Keeffe, and O. M. Yaghi. 'The Chemistry and Applications of Metal-Organic Frameworks.' Science, 2013, 341, 1230444.
[3] G. Ferey. 'Hybrid Porous Solids: Past, Present, Future.' Chem. Soc. Rev., 2008, 37, 191-214.
[4] S. Kitagawa, R. Kitaura, and S. Noro. 'Functional Porous Coordination Polymers.' Angew. Chem.-Int. Edit., 2004, 43, 2334-2375.
[5] W. X. Zhang, P. Q. Liao, R. B. Lin, Y. S. Wei, M. H. Zeng, and X. M. Chen. 'Metal Cluster-Based Functional Porous Coordination Polymers.' Coord. Chem. Rev., 2015, 293, 263-278.
[6] Z. R. Herm, E. D. Bloch, and J. R. Long. 'Hydrocarbon Separations in Metal-Organic Frameworks.' Chem. Mater., 2014, 26, 323-338.
[7] J. R. Li, J. Sculley, and H. C. Zhou. 'Metal-Organic Frameworks for Separations.' Chem. Rev., 2012, 112, 869-932.
[8] D. Alezi, Y. Belmabkhout, M. Suyetin, and M. Eddaoudi. 'MOF Crystal Chemistry Paving the Way to Gas Storage Needs: Aluminum-Based soc-MOF for CH4, O2, and CO2 Storage.' Abstr. Pap. Am. Chem. Soc., 2016, 251, 1.
[9] Y. B. He, W. Zhou, G. D. Qian, and B. L. Chen. 'Methane Storage in Metal-Organic Frameworks.' Chem. Soc. Rev., 2014, 43, 5657-5678.
[10] H. Kim, S. Yang, S. R. Rao, S. Narayanan, E. A. Kapustin, H. Furukawa, A. S. Umans, O. M. Yaghi, and E. N. Wang. 'Water Harvesting from Air with Metal-Organic Frameworks Powered by Natural Sunlight.' Science, 2017, 356, 430-432.
[11] N. C. Burtch, H. Jasuja, and K. S. Walton. 'Water Stability and Adsorption in Metal-Organic Frameworks.' Chem. Rev., 2014, 114, 10575-10612.
[12] M. G. Campbell, and M. Dinca. 'Metal-Organic Frameworks as Active Materials in Electronic Sensor Devices.' Sensors, 2017, 17, 11.
[13] L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne, and J. T. Hupp. 'Metal-Organic Framework Materials as Chemical Sensors.' Chem. Rev., 2012, 112, 1105-1125.
[14] K. Liang, R. Ricco, C. M. Doherty, M. J. Styles, S. Bell, N. Kirby, S. Mudie, D. Haylock, A. J. Hill, C. J. Doonan, and P. Falcaro. 'Biomimetic Mineralization of Metal-Organic Frameworks as Protective Coatings for Biomacromolecules.' Nat. Commun., 2015, 6, 8.
[15] Y. Bai, Y. B. Dou, L. H. Xie, W. Rutledge, J. R. Li, and H. C. Zhou. 'Zr-Based Metal-Organic Frameworks: Design, Synthesis, Structure, and Applications.' Chem. Soc. Rev., 2016, 45, 2327-2367.
[16] P. Falcaro, R. Ricco, A. Yazdi, I. Imaz, S. Furukawa, D. Maspoch, R. Ameloot, J. D. Evans, and C. J. Doonan. 'Application of Metal and Metal Oxide Nanoparticles@MOFs.' Coord. Chem. Rev., 2016, 307, 237-254.
[17] A. Dhakshinamoorthy, Z. H. Li, and H. Garcia. 'Catalysis and Photocatalysis by Metal Organic Frameworks.' Chem. Soc. Rev., 2018, 47, 8134-8172.
[18] Y. Z. Chen, R. Zhang, L. Jiao, and H. L. Jiang. 'Metal-Organic Framework-Derived Porous Materials for Catalysis.' Coord. Chem. Rev., 2018, 362, 1-23.
[19] L. Q. Ma, C. Abney, and W. B. Lin. 'Enantioselective Catalysis with Homochiral Metal-Organic Frameworks.' Chem. Soc. Rev., 2009, 38, 1248-1256.
[20] M. B. Majewski, A. W. Peters, M. R. Wasielewski, J. T. Hupp, and O. K. Farha. 'Metal-Organic Frameworks as Platform Materials for Solar Fuels Catalysis.' ACS Energy Lett., 2018, 3, 598-611.
[21] J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, and J. T. Hupp. 'Metal-Organic Framework Materials as Catalysts.' Chem. Soc. Rev., 2009, 38, 1450-1459.
[22] J. H. Li, Y. S. Wang, Y. C. Chen, and C. W. Kung. 'Metal-Organic Frameworks toward Electrocatalytic Applications.' Appl. Sci.-Basel, 2019, 9, 19.
[23] K. M. Choi, D. Kim, B. Rungtaweevoranit, C. A. Trickett, J. T. D. Barmanbek, A. S. Alshammari, P. D. Yang, and O. M. Yaghi. 'Plasmon-Enhanced Photocatalytic CO2 Conversion within Metal Organic Frameworks under Visible Light.' J. Am. Chem. Soc., 2017, 139, 356-362.
[24] Y. V. Kaneti, J. Tang, R. R. Salunkhe, X. C. Jiang, A. B. Yu, K. C. W. Wu, and Y. Yamauchi. 'Nanoarchitectured Design of Porous Materials and Nanocomposites from Metal-Organic Frameworks.' Adv. Mater., 2017, 29, 40.
[25] A. Balanta, C. Godard, and C. Claver. 'Pd Nanoparticles for C-C Coupling Reactions.' Chem. Soc. Rev., 2011, 40, 4973-4985.
[26] P. Herves, M. Perez-Lorenzo, L. M. Liz-Marzan, J. Dzubiella, Y. Lu, and M. Ballauff. 'Catalysis by Metallic Nanoparticles in Aqueous Solution: Model Reactions.' Chem. Soc. Rev., 2012, 41, 5577-5587.
[27] C. L. Li, M. Iqbal, B. Jiang, Z. L. Wang, J. Kim, A. K. Nanjundan, A. E. Whitten, K. Wood, and Y. Yamauchi. 'Pore-Tuning to Boost the Electrocatalytic Activity of Polymeric Micelle-Templated Mesoporous Pd Nanoparticles.' Chem. Sci., 2019, 10, 4054-4061.
[28] B. Jiang, Y. N. Guo, J. Kim, A. E. Whitten, K. Wood, K. Kani, A. E. Rowan, J. Henzie, and Y. Yamauchi. 'Mesoporous Metallic Iridium Nanosheets.' J. Am. Chem. Soc., 2018, 140, 12434-12441.
[29] C. L. Li, M. Iqbal, J. J. Lin, X. L. Luo, B. Jiang, V. Malgras, K. C. W. Wu, J. Kim, and Y. Yamauchi. 'Electrochemical Deposition: An Advanced Approach for Templated Synthesis of Nanoporous Metal Architectures.' Acc. Chem. Res., 2018, 51, 1764-1773.
[30] C. L. Li, H. B. Tan, J. J. Lin, X. L. Luo, S. P. Wang, J. You, Y. H. Kang, Y. Bando, Y. Yamauchi, and J. Kim. 'Emerging Pt-Based Electrocatalysts with Highly Open Nanoarchitectures for Boosting Oxygen Reduction Reaction.' Nano Today, 2018, 21, 91-105.
[31] R. J. White, R. Luque, V. L. Budarin, J. H. Clark, and D. J. Macquarrie. 'Supported Metal Nanoparticles on Porous Materials. Methods and Applications.' Chem. Soc. Rev., 2009, 38, 481-494.
[32] K. Otake, J. Y. Ye, M. Mandal, T. Islamoglu, C. T. Buru, J. T. Hupp, M. Delferro, D. G. Truhlar, C. J. Cramer, and O. K. Farha. 'Enhanced Activity of Heterogeneous Pd(II) Catalysts on Acid-Functionalized Metal-Organic Frameworks.' ACS Catal., 2019, 9, 5383-5390.
[33] A. Aijaz, Q.-L. Zhu, N. Tsumori, T. Akita, and Q. Xu. 'Surfactant-Free Pd Nanoparticles Immobilized to a Metal–Organic Framework with Size-and Location-Dependent Catalytic Selectivity.' Chem. Commun., 2015, 51, 2577-2580.
[34] G. Lu, S. Z. Li, Z. Guo, O. K. Farha, B. G. Hauser, X. Y. Qi, Y. Wang, X. Wang, S. Y. Han, X. G. Liu, J. S. DuChene, H. Zhang, Q. C. Zhang, X. D. Chen, J. Ma, S. C. J. Loo, W. D. Wei, Y. H. Yang, J. T. Hupp, and F. W. Huo. 'Imparting Functionality to a Metal-Organic Framework Material by Controlled Nanoparticle Encapsulation.' Nat. Chem., 2012, 4, 310-316.
[35] H. Kobayashi, Y. Mitsuka, and H. Kitagawa. 'Metal Nanoparticles Covered with a Metal-Organic Framework: From One-Pot Synthetic Methods to Synergistic Energy Storage and Conversion Functions.' Inorg. Chem., 2016, 55, 7301-7310.
[36] B. Rungtaweevoranit, J. Baek, J. R. Araujo, B. S. Archanjo, K. M. Choi, O. M. Yaghi, and G. A. Somotjai. 'Copper Nanocrystals Encapsulated in Zr-Based Metal-Organic Frameworks for Highly Selective CO2 Hydrogenation to Methanol.' Nano Lett., 2016, 16, 7645-7649.
[37] R. Limvorapitux, L. Y. Chou, A. P. Young, C. K. Tsung, and S. T. Nguyen. 'Coupling Molecular and Nanoparticle Catalysts on Single Metal-Organic Framework Microcrystals for the Tandem Reaction of H2O2 Generation and Selective Alkene Oxidation.' ACS Catal., 2017, 7, 6691-6698.
[38] Y. L. Liu, and Z. Y. Tang. 'Multifunctional Nanoparticle@MOF Core-Shell Nanostructures.' Adv. Mater., 2013, 25, 5819-5825.
[39] H. Noh, C. W. Kung, T. Islamoglu, A. W. Peters, Y. J. Liao, P. Li, S. J. Garibay, X. Zhang, M. R. DeStefano, J. T. Hupp, and O. K. Farha. 'Room Temperature Synthesis of an 8-Connected Zr-Based Metal-Organic Framework for Top-Down Nanoparticle Encapsulation.' Chem. Mater., 2018, 30, 2193-2197.
[40] Q. H. Yang, Q. Xu, and H. L. Jiang. 'Metal-Organic Frameworks Meet Metal Nanoparticles: Synergistic Effect for Enhanced Catalysis.' Chem. Soc. Rev., 2017, 46, 4774-4808.
[41] Q. Yang, F. Yao, Y. Zhong, F. Chen, X. Shu, J. Sun, L. He, B. Wu, K. Hou, and D. Wang. 'Metal–Organic Framework Supported Palladium Nanoparticles: Applications and Mechanisms.' Part. Part. Syst. Charact., 2019, 1800557.
[42] D. A. Islam, and H. Acharya. 'Magnetically Separable Palladium Nanocluster Supported Iron Based Metal-Organic Framework (MIL-88b) Catalyst in Efficient Hydrogenation Reactions.' RSC Adv., 2015, 5, 46583-46588.
[43] F. M. Zhang, S. Zheng, Q. Xiao, Y. J. Zhong, W. D. Zhu, A. Lin, and M. S. El-Shall. 'Synergetic Catalysis of Palladium Nanoparticles Encaged within Amine-Functionalized UiO-66 in the Hydrodeoxygenation of Vanillin in Water.' Green Chem., 2016, 18, 2900-2908.
[44] Y. Huang, S. Liu, Z. Lin, W. Li, X. Li, and R. Cao. 'Facile Synthesis of Palladium Nanoparticles Encapsulated in Amine-Functionalized Mesoporous Metal–Organic Frameworks and Catalytic for Dehalogenation of Aryl Chlorides.' J. Catal., 2012, 292, 111-117.
[45] L. Y. Chen, H. R. Chen, R. Luque, and Y. W. Li. 'Metal-Organic Framework Encapsulated Pd Nanoparticles: Towards Advanced Heterogeneous Catalysts.' Chem. Sci., 2014, 5, 3708-3714.
[46] Y. B. Huang, Y. H. Zhang, X. X. Chen, D. S. Wu, Z. G. Yi, and R. Cao. 'Bimetallic Alloy Nanocrystals Encapsulated in ZIF-8 for Synergistic Catalysis of Ethylene Oxidative Degradation.' Chem. Commun., 2014, 50, 10115-10117.
[47] S. Gao, N. Zhao, M. Shu, and S. Che. 'Palladium Nanoparticles Supported on MOF-5: A Highly Active Catalyst for a Ligand-and Copper-Free Sonogashira Coupling Reaction.' Appl. Catal. A-gen., 2010, 388, 196-201.
[48] R. Kardanpour, S. Tangestaninejad, V. Mirkhani, M. Moghadam, I. Mohammadpoor-Baltork, A. R. Khosropour, and F. Zadehahmadi. 'Highly Dispersed Palladium Nanoparticles Supported on Amino Functionalized Metal-Organic Frameworks as an Efficient and Reusable Catalyst for Suzuki Cross-Coupling Reaction.' J. Organomet. Chem., 2014, 761, 127-133.
[49] H. Li, Z. H. Zhu, F. Zhang, S. H. Xie, H. X. Li, P. Li, and X. G. Zhou. 'Palladium Nanoparticles Confined in the Cages of MIL-101: An Efficient Catalyst for the One-Pot Indole Synthesis in Water.' ACS Catal., 2011, 1, 1604-1612.
[50] A. Lin, A. A. Ibrahim, P. Arab, H. M. El-Kaderi, and M. S. El-Shall. 'Palladium Nanoparticles Supported on Ce-Metal-Organic Framework for Efficient CO Oxidation and Low-Temperature CO2 Capture.' ACS Appl. Mater. Interfaces, 2017, 9, 17961-17968.
[51] J. D. Evans, C. J. Sumby, and C. J. Doonan. 'Post-Synthetic Metalation of Metal–Organic Frameworks.' Chem. Soc. Rev., 2014, 43, 5933-5951.
[52] C. W. Kung, C. O. Audu, A. W. Peters, H. Noh, O. K. Farha, and J. T. Hupp. 'Copper Nanoparticles Installed in Metal-Organic Framework Thin Films Are Electrocatalytically Competent for CO2 Reduction.' ACS Energy Lett., 2017, 2, 2394-2401.
[53] J. H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, and K. P. Lillerud. 'A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability.' J. Am. Chem. Soc., 2008, 130, 13850-13851.
[54] M. R. DeStefano, T. Islamoglu, J. T. Hupp, and O. K. Farha. 'Room-Temperature Synthesis of UiO-66 and Thermal Modulation of Densities of Defect Sites.' Chem. Mater., 2017, 29, 1357-1361.
[55] P. Deria, D. A. Gómez-Gualdrón, I. Hod, R. Q. Snurr, J. T. Hupp, and O. K. Farha. 'Framework-Topology-Dependent Catalytic Activity of Zirconium-Based (Porphinato) Zinc (II) MOFs.' J. Am. Chem. Soc., 2016, 138, 14449-14457.
[56] X. Y. Gong, H. Noh, N. C. Gianneschi, and O. K. Farha. 'Interrogating Kinetic Versus Thermodynamic Topologies of Metal-Organic Frameworks Via Combined Transmission Electron Microscopy and X-Ray Diffraction Analysis.' J. Am. Chem. Soc., 2019, 141, 6146-6151.
[57] D. W. Feng, Z. Y. Gu, J. R. Li, H. L. Jiang, Z. W. Wei, and H. C. Zhou. 'Zirconium-Metalloporphyrin PCN-222: Mesoporous Metal-Organic Frameworks with Ultrahigh Stability as Biomimetic Catalysts.' Angew. Chem.-Int. Edit., 2012, 51, 10307-10310.
[58] S. Sa, H. Silva, L. Brandao, J. M. Sousa, and A. Mendes. 'Catalysts for Methanol Steam Reforming-a Review.' Appl. Catal. B-Environ., 2010, 99, 43-57.
[59] H. Borchert, B. Jürgens, T. Nowitzki, P. Behrend, Y. Borchert, V. Zielasek, S. Giorgio, C. Henry, and M. Bäumer. 'Decomposition of Methanol by Pd, Co, and Bimetallic Co–Pd Catalysts: A Combined Study of Well-Defined Systems under Ambient and UHV Conditions.' J. Catal., 2008, 256, 24-36.
[60] Y. Matsumura, M. Okumura, Y. Usami, K. Kagawa, H. Yamashita, M. Anpo, and M. Haruta. 'Low-Temperature Decomposition of Methanol to Carbon Monoxide and Hydrogen with Low Activation Energy over Pd/ZrO2 Catalyst.' Catal. Lett., 1997, 44, 189-191.
[61] Y. Matsumura, and W. J. Shen. 'Methanol Decomposition and Synthesis over Palladium Catalysts.' Top. Catal., 2003, 22, 271-275.
[62] Y. Usami, K. Kagawa, M. Kawazoe, Y. Matsumura, H. Sakurai, and M. Haruta. 'Catalytic Methanol Decomposition at Low Temperatures over Palladium Supported on Metal Oxides.' Appl. Catal. A-Gen., 1998, 171, 123-130.
[63] N. Iwasa, and N. Takezawa. 'New Supported Pd and Pt Alloy Catalysts for Steam Reforming and Dehydrogenation of Methanol.' Top. Catal., 2003, 22, 215-224.
[64] Y. S. Wang, Y. C. Chen, J. H. Li, and C. W. Kung. 'Toward Metal-Organic-Framework-Based Supercapacitors: Room-Temperature Synthesis of Electrically Conducting MOF-Based Nanocomposites Decorated with Redox-Active Manganese.' Eur. J. Inorg. Chem., 2019, 3036-3044.
[65] C. L. Qin, J. J. Oak, N. Ohtsu, K. Asami, and A. Inoue. 'XPS Study on the Surface Films of a Newly Designed Ni-Free Ti-Based Bulk Metallic Glass.' Acta Mater., 2007, 55, 2057-2063.
[66] A. R. G. Caranton, J. C. C. da Silva Pinto, F. Stavale, J. Barreto, and M. Schmal. 'Statistical Analysis of the Catalytic Synthesis of Vinyl Acetate over Pd-Cu/ZrO2 Nanostructured Based Catalysts.' Catal. Today, 2018.
[67] M. Brun, A. Berthet, and J. C. Bertolini. 'XPS, AES and Auger Parameter of Pd and PdO.' J. Electron. Spectrosc. Relat. Phenom., 1999, 104, 55-60.
[68] J. Batista, A. Pintar, D. Mandrino, M. Jenko, and V. Martin. 'XPS and TPR Examinations of γ-Alumina-Supported Pd-Cu Catalysts.' Appl. Catal. A-gen., 2001, 206, 113-124.
[69] K. Priolkar, P. Bera, P. Sarode, M. Hegde, S. Emura, R. Kumashiro, and N. Lalla. 'Formation of Ce1-XPdXO2-δ Solid Solution in Combustion-Synthesized Pd/CeO2 Catalyst: XRD, XPS, and EXAFS Investigation.' Chem. Mater., 2002, 14, 2120-2128.
[70] E. Meku, C. Y. Du, Y. R. Sun, L. Du, Y. J. Wang, and G. P. Yin. 'Electrocatalytic Activity and Stability of Ordered Intermetallic Palladium-Iron Nanoparticles toward Oxygen Reduction Reaction.' J. Electrochem. Soc., 2016, 163, F132-F138.
[71] J. C. Brown, and E. Gulari. 'Hydrogen Production from Methanol Decomposition over Pt/Al2O3 and Ceria Promoted Pt/Al2O3 Catalysts.' Catal. Commun., 2004, 5, 431-436.
[72] H. Feng, J. W. Elam, J. A. Libera, W. Setthapun, and P. C. Stair. 'Palladium Catalysts Synthesized by Atomic Layer Deposition for Methanol Decomposition.' Chem. Mater., 2010, 22, 3133-3142.
[73] S. Shiizaki, I. Nagashima, Y. Matsumura, and M. Haruta. 'A Kinetic Study of Methanol Decomposition Catalyzed over Plate-Type Palladium Catalyst.' Catal. Lett., 1998, 56, 227-230.
[74] F. Carraro, A. Fapohunda, M. C. Paganini, and S. Agnoli. 'Morphology and Size Effect of Ceria Nanostructures on the Catalytic Performances of Pd/CeO2 Catalysts for Methanol Decomposition to Syngas.' ACS Appl. Nano Mater., 2018, 1, 1492-1501.
[75] M. Skotak, Z. Karpinski, W. Juszczyk, J. Pielaszek, L. Kepinski, D. V. Kazachkin, V. I. Kovalchuk, and J. L. d'Itri. 'Characterization and Catalytic Activity of Differently Pretreated Pd/Al2O3 Catalysts: The Role of Acid Sites and of Palladium-Alumina Interactions.' J. Catal., 2004, 227, 11-25.
[76] X. L. Li, T. W. Goh, L. Li, C. X. Xiao, Z. Y. Guo, X. C. Zeng, and W. Y. Huang. 'Controlling Catalytic Properties of Pd Nanoclusters through Their Chemical Environment at the Atomic Level Using Isoreticular Metal-Organic Frameworks.' ACS Catal., 2016, 6, 3461-3468.
[77] R. Wojcieszak, A. Karelovic, E. M. Gaigneaux, and P. Ruiz. 'Oxidation of Methanol to Methyl Formate over Supported Pd Nanoparticles: Insights into the Reaction Mechanism at Low Temperature.' Catal. Sci. Technol., 2014, 4, 3298-3305.
[78] D. Yang, V. Bernales, T. Islamoglu, O. K. Farha, J. T. Hupp, C. J. Cramer, L. Gagliardi, and B. C. Gates. 'Tuning the Surface Chemistry of Metal Organic Framework Nodes: Proton Topology of the Metal-Oxide-Like Zr6 Nodes of UiO-66 and NU-1000.' J. Am. Chem. Soc., 2016, 138, 15189-15196.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50243-
dc.description.abstract金屬有機骨架(metal-organic frameworks, MOFs)具有高比表面積以及可調控的孔洞特性,因此相當適合應用在觸媒反應領域中。在本研究中,我們合成三種以鋯為基底的金屬有機骨架UiO-66、NU-902、PCN-222作為孔洞性擔體,以溶劑熱沉積法摻入鈀奈米顆粒。物化性質鑑定證實這些金屬有機骨架的結構、形貌和孔洞性質在擔載鈀之後沒有明顯改變,且不同尺寸的孔洞可以有效限制形成不同大小之鈀奈米顆粒。鈀在觸媒中有Pd(II)和Pd(0)兩種價態分布。
甲醇分解產氫反應被應用來觀察鈀擔載前後之觸媒的催化效果。活性測試結果顯示在反應溫度150-225oC的區間,僅擔載有鈀的觸媒Pd@Zr-MOFs具有催化活性,其中Pd@UiO-66具有最好的活性以及最低的活化能。Pd@UiO-66的高催化活性的可能緣自於最小的孔洞所形成的最小鈀奈米顆粒。從in-situ IR實驗中可以證實甲醇能在UiO-66的表面被活化形成甲氧基,而孔洞中的鈀奈米顆粒可以進一步轉化甲氧基為一氧化碳、甲醛、甲酸甲酯等後續產物,並同時產生氫氣,因此有利於整體甲醇產氫反應。
zh_TW
dc.description.abstractMetal–organic frameworks (MOFs) possess unique characteristics such as ultrahigh specific surface area and tunable pore structure, rendering them as ideal candidates for catalytic applications. In this study, three topologically distinct zirconium-based metal–organic frameworks (Zr-MOFs), i.e., UiO-66, NU-902, and PCN-222, were synthesized and employed as porous supports to incorporate Pd nanoparticles (NPs) via the solvothermal deposition in MOF (SIM) technique. Physicochemical characterizations confirm that the structural, morphological, and textural features of pristine Zr-MOFs are mainly preserved after the incorporation of Pd NPs. It is shown that the sizes of Pd NPs are controllable by the pore confinement of Zr-MOFs. There are two oxidation states, i.e., Pd(II) and Pd(0), in Pd@Zr-MOFs catalysts. Methanol dehydrogenation is employed to investigate the catalytic activities of Pd-free and Pd-containing MOFs (Pd@MOFs). Reaction testing shows that only Pd@MOFs display obvious catalytic activities at the temperature studied (150 – 225oC), and Pd@UiO-66 displays significantly higher catalytic activity and lower activation energy as compared to Pd@NU-902 and Pd@PCN-222 for methanol dehydrogenation. The observed enhanced performance of Pd@UiO-66 is attributed to the smaller size of Pd NPs due to smaller pore size of UiO-66. In-situ infrared spectroscopy characterizations suggest that the methanol is activated on the surface of UiO-66 to form methoxy adspecies, and the Pd NPs within the framework of UiO-66 aid in the further dehydrogenation of methoxy adspecies, thereby facilitating the overall dehydrogenation of methanol.en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:33:40Z (GMT). No. of bitstreams: 1
U0001-1108202014471000.pdf: 4488436 bytes, checksum: 9d984f0bbb9b19a7b045b929ba7f7035 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
摘要 iii
ABSTRACT iv
目錄 v
圖目錄 viii
表目錄 xi
第一章 緒論 1
1.1 研究背景 1
1.1.1 金屬有機骨架作為觸媒 2
1.1.2 擔載金屬於金屬有機骨架之方式 4
1.2 觸媒介紹 7
1.3 反應介紹 10
1.3.1 甲醇產氫反應 10
1.3.2 鈀觸媒用於甲醇產氫反應 10
1.4 研究目標 12
第二章 實驗方法 13
2.1 實驗藥品 13
2.2 觸媒製備 14
2.2.1 金屬有機骨架製備 14
2.2.2 鈀金屬擔載 15
2.3 觸媒鑑定 16
2.3.1 X光繞射儀 16
2.3.2 掃描式電子顯微鏡 16
2.3.3 穿透式電子顯微鏡 16
2.3.4 能量色散X射線光譜 17
2.3.5 感應耦合電漿體光學發射光譜儀 17
2.3.6 X射線光電子能譜儀 18
2.3.7 比表面積及孔隙分佈測定儀 18
2.3.8 熱重分析儀 19
2.3.9 傅立葉轉換紅外線光譜儀 20
2.4 催化反應 22
2.4.1 反應系統架設 22
2.4.2 甲醇產氫反應實驗條件 23
2.5 產物鑑定 24
2.5.1 氣相層析儀 24
第三章 結果與討論 28
3.1 觸媒鑑定結果 28
3.1.1 觸媒結構 28
3.1.2 觸媒形貌 29
3.1.3 觸媒比表面積與孔洞性質 33
3.1.4 觸媒之鈀擔載 34
3.1.5 觸媒上鈀的價態 35
3.1.6 觸媒熱穩定性 36
3.2 反應活性結果 38
3.2.1 氫氣產率結果 38
3.2.2 甲醇轉化率 40
3.2.3 反應活化能 41
3.2.4 反應穩定性 42
3.2.5 反應後觸媒鑑定 45
3.3 反應機制探討 49
3.3.1 甲醇在觸媒表面吸附行為 49
3.3.2 甲醇分解反應機制 54
第四章 結論 55
第五章 未來展望與建議 56
第六章 參考文獻 57
dc.language.isozh-TW
dc.title以鋯為基底之金屬有機骨架擔載鈀觸媒應用於甲醇分解產氫反應
zh_TW
dc.titleMethanol Dehydrogenation over Palladium Nanoparticles Supported on Zirconium-Based Metal-Organic Frameworksen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee龔仲偉(Chung-Wei Kung),林昇佃(Shawn D. Lin)
dc.subject.keyword金屬有機骨架,孔洞材料,鈀,奈米顆粒,溶劑熱沉積法,催化,甲醇分解產氫,原位紅外光譜鑑定,zh_TW
dc.subject.keywordmetal-organic framework,porous material,palladium,nanoparticle,solvothermal deposition in MOF,catalysis,methanol dehydrogenation,in-situ IR,en
dc.relation.page64
dc.identifier.doi10.6342/NTU202002950
dc.rights.note有償授權
dc.date.accepted2020-08-13
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
U0001-1108202014471000.pdf
  目前未授權公開取用
4.38 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved