請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5023
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張雅君(Ya-Chun Chang) | |
dc.contributor.author | Chih-Ching Lee | en |
dc.contributor.author | 李芷菁 | zh_TW |
dc.date.accessioned | 2021-05-15T17:51:02Z | - |
dc.date.available | 2019-09-02 | |
dc.date.available | 2021-05-15T17:51:02Z | - |
dc.date.copyright | 2014-09-02 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-08-18 | |
dc.identifier.citation | 毛青樺。2008。蟹爪蘭X病毒與紅龍果X病毒之分子特性與檢測。
國立台灣大學植物病理微生物學研究所碩士論文。 呂有其。2007。仙人掌病毒X新分離株之特性分析與感染性選殖株之構築。 國立台灣大學植物病理微生物學研究所碩士論文。 李勇賜。2010。紅龍果X病毒之特性分析、感染力選植株構築與抗血清製 備。國立台灣大學植物病理微生物學研究所碩士論文。 何艾翎。2012。紅龍果X病毒鞘蛋白次基因體啟動子之分析及應用。國立台灣大學植物病理微生物學研究所碩士論文。 陳君弢。2012。紅龍果X病毒缺失性RNA之選殖與特性分析。國立台灣大學植物病理微生物學研究所碩士論文。 劉命如。2000。紅龍果嵌紋病毒生物特性及全長核酸序列之研究。國立台灣大學植物病理微生物學研究所碩士論文。 Ambros, S., El-mohtar, C., Ruiz-ruiz, S., Pena, L., Guerri, J., Dawson, W. O., Moreno, P., and Proteccion, C. De. 2011. Agroinoculation of Citrus tristeza virus Causes Systemic Infection and Symptoms in the Presumed Nonhost Nicotiana benthamiana. 24:1119–1131. Anandalakshmi, R., Pruss, G. J., Ge, X., Marathe, R., Mallory, a C., Smith, T. H., and Vance, V. B. 1998. A viral suppressor of gene silencing in plants. Proc. Natl. Acad. Sci. U. S. A. 95: 13079–84. Attathom, S., Weathers, L. G., and Gumpf, D. J. 1978. Idetification and characterization of a potexvirus from California barrel cactus. Phytopathology 68: 1401-6. Baulcombe, D. C., Chapman, S., and Santa Cruz, S. 1995. Jellyfish green fluorescent protein as a reporter for virus infections. Plant J. 7:1045–53. Bercks, R. 1971. Cactus virus X. CMI/AAB Descriptions of plant viruses NO. 58. Bouzoubaa, S., Niesbach-Klosgen, U., Jupin, I., Guilley, H., Richards, K., and Jonard, G. 1991. Shortened forms of beet necrotic yellow vein virus RNA-3 and - 4: internal deletions and a subgenomic RNA. J. Gen. Virol. 72 ( Pt 2):259–66 Burgyan, J,M and Grieco, F. 1989. A defective interfering RNA molecule in Cymbidium ringspot virus infections. Journal of General Virology 70: 235-239. Burgyan, J., Salanki, K., Dalmay, T., and Russo, M. 1994. Expression of homologous and heterologous viral coat protein-encoding genes using recombinant DI RNA from cymbidium ringspot tombusvirus. Gene 138:159–63. Calvert, L. A., Cuervo, M. I., Ospina, M. D., Fauquet, C. M., and Ramirez, B. C. 1996. Characterization of Cassava common mosaic virus and a defective RNA species. Journal of General Virology 77: 525-530. Chapman, S., Kavanagh, T., and Baulcombe, D. 1992. Potato virus X as a vector for gene expression in plants. The Plant Journal : For Cell and Molecular Biology 2: 4, 549–57. Chen, J., MacFarlane, S. a, and Wilson, T. M. 1994. Detection and sequence analysis of a spontaneous deletion mutant of soil-borne wheat mosaic virus RNA2 associated with increased symptom severity. Virology 202: 921–9. Cheng, C.-P., Pogany, J., and Nagy, P. D. 2002. Mechanism of DI RNA Formation in Tombusviruses: Dissecting the Requirement for Primer Extension by the Tombusvirus RNA-Dependent RNA Polymerase in Vitro. Virology 304:460–473 7. Cheng, C., Nagy, P. D., Cheng, C., and Nagy, P. D. 2003. Mechanism of RNA Recombination in Carmo- and Tombusviruses : Evidence for Template Switching by the RNA-Dependent RNA Polymerase In Vitro Mechanism of RNA Recombination in Carmo- and Tombusviruses. J. of Virology 77: 12033-47. Damayanti, T. a, Nagano, H., Mise, K., Furusawa, I., and Okuno, T. 1999. Brome mosaic virus defective RNAs generated during infection of barley plants. J. Gen. Virol. 80: 2511–8. Dawson, W. O., Lewandowski, D. J., Hilf, M. E., Bubrick, P., Raffo, a J., Shaw, J. J., Grantham, G. L., and Desjardins, P. R. 1989. A tobacco mosaic virus-hybrid expresses and loses an added gene. Virol. 172: 285–92. Francki, R. I. 1985. Plant virus satellites. Annual Review of Microbiology 39: 151–74. Friedewald, W. F., and Pickels, E. G. 1944. Centrifugation and ultrafiltration studies on allantoic fluid preparations of influenza virus. Journal of Experimental Medicine. 79: 301-317. Gallie, D. R., and Kobayashi, M. 1994. The role of the 3’-untranslated region of non-polyadenylated plant viral mRNAs in regulating translational efficiency. Gene 142: 159–65. Graves, M., and Roossinck, M, 1995, Characterization of defective RNAs derived from RNA3 of the Fny strain of Cucumber mosaic virus. Journal of Virology 69: 4746-51. Grdzelishvili, V. Z., Chapman, S. N., Dawson, W. O., and Lewandowski, D. J. 2000. Mapping of the Tobacco mosaic virus movement protein and coat protein subgenomic RNA promoters in vivo. Virology 275: 177–92. Henle, W., and Lief, F. S. 1956. Studies on the soluble antigen of influenza virus. III. The decreased incorporation of S antigen into elementary bodies of increasing incompleteness. Virology 2: 782-97. Huang, A. S., and Baltimore, D. 1970. Defective Viral Particles and Viral Disease Processes. Nature 226: 325-327. Hillman, B. I., Carrington, J. C., and Morris, T. J. 1987. A defective interfering RNA that contains a mosaic of a plant virus genome. Cell 51:427–33. Jones, R. W., Jackson, a O., and Morris, T. J. 1990. Defective-interfering RNAs and elevated temperatures inhibit replication of tomato bushy stunt virus in inoculated protoplasts. Virology 176:539–45. Kim, K. H., Hemenway, C., Kim, K., and Hemenway, C. 1996. The 5 ’ nontranslated region of potato virus X RNA affects both genomic and subgenomic RNA synthesis . Journal of Virology 70: 8, 5533 – 40. Koenig, R., Lesemann, D.-E., Loss, S., Engelmann, J., Commandeur, U., Deml, G., Schiemann, J., Aust, H., and Burgermeister, W. 2006. Zygocactus virus X-based expression vectors and formation of rod-shaped virus-like particles in plants by the expressed coat proteins of Beet necrotic yellow vein virus and Soil-borne cereal mosaic virus. The Journal of General Virology 87: 439–43. Kollar, a, Dalmay, T., and Burgyan, J. 1993. Defective interfering RNA-mediated resistance against cymbidium ringspot tombusvirus in transgenic plants. Virology 193:313–8. Komarova, T. V, Skulachev, M. V, Zvereva, a S., Schwartz, a M., Dorokhov, Y. L., and Atabekov, J. G. 2006. New viral vector for efficient production of target proteins in plants. Biochem. Biokhimii͡a 71: 846–50. Kovalev, N., and Nagy, P. D. 2014. The expanding functions of cellular helicases: the tombusvirus RNA replication enhancer co-opts the plant eIF4AIII-like AtRH2 and the DDX5-like AtRH5 DEAD-box RNA helicases to promote viral asymmetric RNA replication. PLoS Pathogens 10: e1004051. Lewandowski, D. J., and Dawson, W. O. 1998. Deletion of internal sequences results in tobacco mosaic virus defective RNAs that accumulate to high levels without interfering with replication of the helper virus. Virology 251:427–37. Li, X. H., Heaton, L. A., Morris, T. J., and Simon, A. E. 1989. Turnip crinkle virus defective interfering RNAs intensify viral symptoms and are generated de novo. PNAS 86:9173–9177. Li, X. H., and Simon, A. E. 1991. In vivo accumulation of a turnip crinkle virus defective interfering RNA is affected by alterations in size and sequence. Journal of Virology 65: 4582–4590. Lico, C., Chen, Q., and Santi, L. 2008. Viral vectors for production of recombinant proteins in plants. Journal of cellular physiology 216: 366–77. Lough, T. J., Lee, R. H., Emerson, S. J., Forster, R. L. S., and Lucas, W. J. 2006. Functional analysis of the 5’ untranslated region of potexvirus RNA reveals a role in viral replication and cell-to-cell movement. Virology 351: 455–65. Mawassi, M., Karasev, a V, Mietkiewska, E., Gafny, R., Lee, R. F., Dawson, W. O., and Bar-Joseph, M. 1995. Defective RNA molecules associated with citrus tristeza virus. Virology 208: 383–7. Nagy, P. D., and Simon, A. E. 1997. New Insights into the Mechanisms of RNA Recombination. Virology 9: 235, 1–9. Olsthoorn, R. C., Mertens, S., Brederode, F. T., and Bol, J. F. 1999. A conformational switch at the 3’ end of a plant virus RNA regulates viral replication. The EMBO Journal 18: 17, 4856–64. Pathak, K. B., and Nagy, P. D. 2009. Defective Interfering RNAs: Foes of Viruses and Friends of Virologists. Viruses 1:895–919. Pillai-Nair, N., Kim, K.-H., and Hemenway, C. 2003. Cis-acting Regulatory Elements in the Potato Virus X 3’Non-translated Region Differentially Affect Minus-strand and Plus-strand RNA Accumulation. J. Mol. Biol. 326:701–720. Pogany, J., and Nagy, P. D. 2008. Authentic replication and recombination of Tomato bushy stunt virus RNA in a cell-free extract from yeast. J. Virol. 82: 5967–80. Pogany, J., Romero, J., Huang, Q., Sgro, J. Y., Shang, H., and Bujarski, J. J. 1995. De novo generation of defective interfering-like RNAs in broad bean mottle bromovirus. Virology 212:574–86. Prody, G. A., Bakos, J. T., Buzayan, J. M., Schneider, I. R., and Bruening, G.1985. Autolytic processing of dimeric plant virus satellite RNA. Science. 737: 24-27. Qiu, W., Park, J., and Scholthof, H. B. 2002. Tombusvirus P19-Mediated Suppression of Virus-Induced Gene Silencing Is Controlled by Genetic and Dosage Features That Influence Pathogenicity. Mol. Plant. Microbe. Interact. 15: 3, 269–280. Qiu, W., and Scholthof, H. B. 2007. Using vectors derived from tomato bushy stunt virus (TBSV) and TBSV defective interfering RNAs (DIs). Curr. Protoc. Microbiol. Chapter 16:Unit 16I.4. Qu, F., and Morris, T. J. 2002. Efficient infection of Nicotiana benthamiana by Tomato bushy stunt virus is facilitated by the coat protein and maintained by p19 through suppression of gene silencing. Mol. Plant. Microbe. Interact. 15:3, 193–202. Rochon, D. M. 1991. Rapid de novo generation of defective interfering RNA by cucumber necrosis virus mutants that do not express the 20-kDa nonstructural protein. Proc. Natl. Acad. Sci. 88:11153–11157. Romero, J., Huang, Q., Pogany, J., and Bujarski, J. J. 1993. Characterization of defective interfering RNA components that increase symptom severity of broad bean mottle virus infections. Virology 194:576–84. Roy, G., Fedorkin, O., Fujiki, M., Skarjinskaia, M., Knapp, E., Rabindran, S., and Yusibov, V. 2013. Deletions within the 3’ non-translated region of Alfalfa mosaic virus RNA4 do not affect replication but significantly reduce long-distance movement of chimeric Tobacco mosaic virus. Viruses 5:1802–14. Roux, L., Simon, A. E., and Holland, J. J. 1991. Effect of defective interfering viruses on virus replication and pathogenesis. Advance in Virus Research 40: 181-211. Rubino, L., Burgyan, J., and Russo, M. 1995. Molecular cloning and complete nucleotide sequence of carnation Italian ringspot tombusvirus genomic and defective interfering RNAs. Arch Virol. 140: 2027-39. Sandoval, C., Pogany, J., Bujarski, J., and Romero, J. 2008. Use of a defective RNA of broad bean mottle bromovirus for stable gene expression in legumes. Arch. Virol. 153:1755–8. Scholthof, H. B. 1999. Rapid Delivery of Foreign Genes into Plants by Direct Rub-Inoculation with Intact Plasmid DNA of a Tomato Bushy Stunt Virus Gene Vector. J. Virol 73: 7823-29. Scholthof, H. B., Scholthof, K. B., and Jackson, a O. 1996. Plant virus gene vectors for transient expression of foreign proteins in plants. Annu. Rev. Phytopathol. 34:299–323. Simon, A. E., Roossinck, M. J., and Havelda, Z. 2004. Plant virus satellite and defective interfering RNAs: new paradigms for a new century. Annu. Rev. Phytopathol. 42:415–37 Sztuba-solińska, J., Urbanowicz, A., Figlerowicz, M., and Bujarski, J. J. 2011. RNA-RNA recombination and evolution in virus-infected plants. Annu. Rev. Phytopathol. 49: 415–43. Szittya, G. 2002. Short defective interfering RNAs of Tombusviruses are not targeted but trigger post-transcriptional gene silencing against their helper virus. Plant Cell online. 14 : 359-372 Takeshita, M., Matsuo, Y., Suzuki, M., Furuya, N., Tsuchiya, K., and Takanami, Y. 2009. Impact of a defective RNA 3 from cucumber mosaic virus on helper virus infection dynamics. Virology 389:59–65 Voinnet, O., Pinto, Y. M., and Baulcombe, D. C. 1999. Suppression of gene silencing: A general strategy used by diverse DNA and RNA viruses of plants. Proc. Natl. Acad. Sci. 96: 14147-52. Voinnet, O., Rivas, S., Mestre, P., and Baulcombe, D. 2003. An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J. 33: 949–56. Vance, V., and Vaucheret, H. 2001. RNA silencing in plants--defense and counterdefense. Science 292: 2277–80. White, K. a, Bancroft, J. B., and Mackie, G. a. 1991. Defective RNAs of Clover yellow mosaic virus encode nonstructural/coat protein fusion products. Virology183: 479-86. White, K. A., and Morris, T. J. 1999. Defective and defective interfering RNAs of monopartite plus-strand RNA plant viruses. Current Topics in Microbiology and Immunology 239: 1-17. Wierzchoslawski, R., and Bujarski, J. J. 2006. Efficient in vitro system of homologous recombination in brome mosaic bromovirus. J. Virol. 80:6182–7. Yeh, T. Y., Lin, B. Y., Chang, Y. C., Hsu, Y. H., and Lin, N. S. 1999. A defective RNA associated with bamboo mosaic virus and the possible common mechanisms for RNA recombination in potexviruses. Virus Genes 18:121–8. Zhang, X., and Nuss, D. L. 2008. A host dicer is required for defective viral RNA production and recombinant virus vector RNA instability for a positive sense RNA virus . Proc. Natl. Acad. Sci.105:16749-54 Zhang, Z., Fradin, E., de Jonge, R., van Esse, H. P., Smit, P., Liu, C.-M., and Thomma, B. P. H. J. 2013. Optimized agroinfiltration and virus-induced gene silencing to study Ve1-mediated Verticillium resistance in tobacco. Mol. Plant. Microbe. Interact. 26:182–90. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5023 | - |
dc.description.abstract | 紅龍果為仙人掌科三角柱屬(Hylocereus spp.)之多年生攀附性植物,亦為近年台灣大力推廣之熱帶水果,其田間栽種植株常遭受病毒為害。目前國內已發現紅龍果被仙人掌X病毒(Cactus virus X, CVX)、蟹爪蘭X病毒(Zygocactus virus X, ZyVX)及紅龍果X病毒(Pitaya virus X, PiVX)所感染,且這三種potexvirus病毒普遍存在全台各地紅龍果果園中。PiVX為本實驗室所發現鑑定之Potexvirus屬新病毒,我們從感染PiVX的紅龍果植株萃取總量RNA,以北方雜合分析發現一些小片段RNA與PiVX探針有反應;進一步選殖與序列分析,確認其為源自PiVX的缺失性RNA (defective RNA, dRNA)。dRNA為病毒基因體RNA經過缺失與重組後產生的次病毒分子,需輔助病毒(helper virus)提供複製酵素、鞘蛋白與移動蛋白等,才能在寄主體內複製、包被與移行。從紅龍果所選殖到不同長度之PiVX dRNA選殖株,先製備成RNA轉錄體,再與PiVX共同接種菸草原生質體,以篩選在輔助病毒存在下,複製效率最佳的dRNA。經過數次的原生質體接種試驗,篩選出增殖能力最佳的P1 dRNA,其保留了5’端645 nt與3’端196 nt,總長度為841 nt。為了將PiVX dRNA改造為可應用在植物上的病毒載體,我們以P1 dRNA為基礎,構築兩種以不同方法表現綠色螢光基因(enhanced green fluorescent protein, EGFP)的載體,分別為P1-EF與P1-E。P1-EF以複製酶的轉譯架構與外源基因結合,以形成融合蛋白;P1-E為將PiVX鞘蛋白基因之次基因啟動子(subgenomic promoter, SGP)加入PiVX dRNA中,以SGP表現外源基因。其中,P1-E已成功在菸草原生質體及白藜植株中表現EGFP,但表現效率並不高。故嘗試短暫表現基因靜默抑制子p19於菸草與白藜植株,以期加強P1-E表現EGFP之能力;結果在白藜植株上,p19對EGFP之表現沒有顯著影響。而在非繁殖寄主菸草上,先短暫表現p19後再接種P1-E,可以抗體偵測到PiVX鞘蛋白在菸草中累積,但以GFP抗體仍然無法偵測到訊號。此外,欲研究P1 dRNA可被PiVX辨識並增殖的cis-acting elements序列,我們構築數個序列刪除株,同樣以菸草原生質體分析其活性。目前研究結果顯示PiVX dRNA的5’端只需保留435 nt,即可被PiVX輔助病毒所辨識並增殖。另外,我們也由紅龍果中分離出CVX的缺失性RNA,其保留5’端677 nt及3’端591 nt,總長度為1268 nt。進一步將其RNA轉錄體與PiVX以菸草原生質體測試活性,結果發現CVX dRNA可被PiVX複製,顯示CVX dRNA所保留的序列具有被PiVX複製酶辨識的cis-acting elements。 | zh_TW |
dc.description.abstract | Pitaya, a climbing succulent plant in the family Cactaceae, has gradually become an important economic fruit in Taiwan. However, its cultivation is restricted by viral diseases. Cactus virus X (CVX), Zygocactus virus X (ZyVX) and Pitaya virus X (PiVX) have been reported to infect pitaya in Taiwan. These viruses are commonly found in the field. PiVX is a new member of the Potexvirus genus identified in our lab. We extracted total RNA from infected pitaya and discovered some small RNAs reacting to PiVX probe by Northern blot. After cloning and sequence analysis, we confirmed that these small RNAs are defective RNAs (dRNAs) of PiVX. dRNAs are subviral RNAs produced from RNA virus via deletion and recombination. dRNAs depend on their parental virus (helper virus) to replicate, encapsidate and move in host plant. To select the PiVX dRNAs with best infectivity, transcripts of different dRNA clones from pitaya were analyzed with the help of PiVX transcripts in Nicotiana benthamiana protoplasts by Northern blot. After several independent inoculation assays, we found P1 dRNA, which contains 5’ 645 nt region and 3’ 196 nt region with its total length of 841 nucleotides had the best replication ability. In order to develop PiVX dRNA as a virus expression vector, we used P1-based vector to express enhanced green fluorescent protein (EGFP) gene by two different ways and thus constructed P1-EF and P1-E. P1-EF combined the open reading frame of RNA-dependent RNA Polymerase (RdRP) with foreign gene to form a fusion protein. P1-E recruited the subgenomic promoter (SGP) of PiVX into P1 dRNA to express foreign gene through sgRNA expression。According to experimental results, P1-E could successfully express EGFP in N. benthamiana protoplasts and Chenopodium quinoa plants, but the expression efficiency was low. To improve the expression efficacy of P1-E, we tried to express p19, a gene silencing suppressor, in N. benthamiana and C. quinoa plants. The results indicated p19 had no significant effect on the expression of EGFP in C. quinoa plants. However, when P1-E was inoculated to N. benthamiana plant after transient expression of p19, PiVX CP accumulation increased but EGFP expression could not be detected by GFP antibody. In addition, in order to study the cis-acting elements that can be recognized and replicated by PiVX, we constructed and analyzed some deletion mutants of P1 dRNA in N. benthamiana protoplasts. The current result indicated that the dRNA containing only 5’ 435 nt region and 3’196 nt region could still be replicated by helper virus. Furthermore, we also cloned CVX dRNAs from pitaya plant, which contain CVX 5’ 677 nt region and 3’ 591 nt region with its total length of 1268 nucleotides. For testing the biological activity, transcripts of CVX dRNAs together with PiVX were inoculated to N. benthamiana protoplasts, and Northern blot demonstrated CVX dRNAs could be replicated by PiVX. Accordingly, the result suggested that PiVX RdRP can recognize the cis-acting elements of CVX dRNAs. | en |
dc.description.provenance | Made available in DSpace on 2021-05-15T17:51:02Z (GMT). No. of bitstreams: 1 ntu-103-R01633014-1.pdf: 2492166 bytes, checksum: 4926c437c6fc4cfbe0206000b860c97a (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 中文摘要 I
Abstract III 壹、 前言 1 一、缺失性RNA研究歷史 1 二、缺失性RNA之形成與特性 2 三、 缺失性RNA之應用 3 四、 病毒載體之研究 4 五、 基因靜默抑制子之應用 5 六、 紅龍果病毒X及仙人掌病毒X之介紹 6 七、 PiVX缺失性RNA及鞘蛋白次基因啟動子(subgenomic promoter, SGP)之研究 6 八、 研究動機 7 貳、材料與方法 9 二、 實驗植物與栽種 9 三、 缺失性RNA之選殖 10 (一)小量植物全RNA之萃取 10 (二)反轉錄聚合酶鏈鎖反應 10 (三)從膠體回收核酸 11 (四)限制酶截切反應與去磷酸化反應 12 (六)轉型作用 12 (七)正確選殖株之篩選 13 1. 菌落聚合酶連鎖反應 13 2. 小量質體DNA製備與篩選 13 3. pUC-P1 dRNA之構築 14 4. 序列比對與分析 14 四、生體外轉錄體之製備 14 (一) 限制酶直線化質體 14 (二) 生體外轉錄反應 15 五、原生質體之製備、接種與分析 15 (一) 原生質體之製備 15 (二) 原生質體之接種 16 (三) 原生質體之全RNA之萃取與分析 16 六、缺失性RNA在白藜上之接種 17 七、 北方轉漬與雜合法分析 17 (一) PiVX 5’端、CVX 3’端與EGFP專一性DNA探針之製備 17 (二) 北方轉漬法 18 (三) 北方雜合反應 18 八、pUC-P1-EF及pUC-P1-E之構築 19 九、p35S-P1-E與 pGR-P1-E 之構築 20 十、影響PiVX複製之cis-acting elements分析 20 (一) 構築5’端不同長度之缺失性RNA 20 (二) 菸草原生質體接種與分析 21 十一、接種紅龍果實生苗 21 十二、以農桿菌注射法進行病毒選殖株之接種 22 (一) 農桿菌轉型 22 (二) 農桿菌注射法 22 十三、以農桿菌注射表現Tomato bushy stunt virus (TBSV) P19蛋白於菸草及白藜 22 (一) 以農桿菌表現P19蛋白後再表現EGFP 22 (二) 以農桿菌表現P19與EGFP 23 十四、西方轉漬分析法 23 (一) 聚丙烯醯氨膠體電泳 23 (二) 樣品製備及聚丙烯醯氨膠體電泳分析 24 (三) 免疫轉漬分析 24 參、結果 26 一、 PiVX缺失性RNA之選殖與分析 26 二、測試PiVX缺失性RNA於菸草原生質體中之複製能力 27 三、測試PiVX缺失性RNA於白藜植株系統葉之累積能力 27 四、以PiVX缺失性RNA為載體表現外源蛋白 28 (一)以菸草原生質體分析P1載體利用鞘蛋白次基因體RNA啟動子或表現融合蛋白之方法表現綠色螢光蛋白之效果 28 (二) 以白藜植株分析P1載體利用鞘蛋白次基因體RNA啟動子表現綠色螢光蛋白之效果 29 五、 PiVX複製相關cis-acting elements之分析 31 六、 測試CVX缺失性RNA在PiVX幫助下於菸草原生質體之複製能力 31 (一) CVX缺失性RNA之選殖與分析 31 (二) CVX缺失性RNA在PiVX協助下於菸草原生質體中之複製能力 32 肆、討論 33 一、 PiVX與CVX缺失性RNA之選殖 33 二、以PiVX缺失性RNA於菸草原生質體表現外源基因 34 三、iVX缺失性RNA於白藜植株表現外源基因 36 四、表現p19對缺失性RNA載體之影響 37 五、桿菌注射法同時表現p19與PiVX缺失性RNA載體 38 六、PiVX製相關之cis-acting elements 區域 39 七、CVX缺失性RNA之分析 39 八、 結語 40 伍、參考文獻 42 陸、表 49 柒、圖 50 捌、附錄 64 | |
dc.language.iso | zh-TW | |
dc.title | 紅龍果X病毒之cis-acting elements與缺失性RNA之分析與應用 | zh_TW |
dc.title | Analysis and application of cis-acting elements and defective RNA of Pitaya virus X | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蔡慶修(Ching-Hsiu Tsai),陳穎練(Ying-Lian Chen) | |
dc.subject.keyword | 紅龍果X病毒,仙人掌X病毒,cis-acting elements,缺失性RNA,病毒載體,次基因啟動子, | zh_TW |
dc.subject.keyword | Pitaya virus X,Cactus virus X,cis-acting elements,detective RNA,viral vector,subgenomic promoter, | en |
dc.relation.page | 69 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2014-08-18 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 植物病理與微生物學研究所 | zh_TW |
顯示於系所單位: | 植物病理與微生物學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf | 2.43 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。