請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50220
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳志毅(Chih-I Wu) | |
dc.contributor.author | Yu-Bing Lan | en |
dc.contributor.author | 藍鈺邴 | zh_TW |
dc.date.accessioned | 2021-06-15T12:32:58Z | - |
dc.date.available | 2022-01-01 | |
dc.date.copyright | 2021-03-22 | |
dc.date.issued | 2021 | |
dc.date.submitted | 2021-02-05 | |
dc.identifier.citation | 1. Forrest, S. R., The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 2004, 428 (6986), 911-918. 2. Schilinsky, P.; Waldauf, C.; Brabec, C. J., Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors. Applied Physics Letters 2002, 81 (20), 3885-3887. 3. Shaheen, S. E.; Radspinner, R.; Peyghambarian, N.; Jabbour, G. E., Fabrication of bulk heterojunction plastic solar cells by screen printing. Applied Physics Letters 2001, 79 (18), 2996-2998. 4. Yang, F.; Shtein, M.; Forrest, S. R., Controlled growth of a molecular bulk heterojunction photovoltaic cell. Nature Materials 2005, 4 (1), 37-41. 5. Menke, S. M.; Holmes, R. J., Exciton diffusion in organic photovoltaic cells. Energy Environmental Science 2014, 7 (2), 499-512. 6. Sirringhaus, H.; Brown, P. J.; Friend, R. H.; Nielsen, M. M.; Bechgaard, K.; Langeveld-Voss, B. M. W.; Spiering, A. J. H.; de Leeuw, D. M. et al., Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 1999, 401 (6754), 685-688. 7. Greenham, N. C.; Peng, X. G.; Alivisatos, A. P., Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. Physical Review B 1996, 54 (24), 17628-17637. 8. Li, G.; Yao, Y.; Yang, H.; Shrotriya, V.; Yang, G.; Yang, Y., 'Solvent annealing' effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes. Adv. Funct. Mater. 2007, 17 (10), 1636-1644. 9. Wie, J. J.; Nguyen, N. A.; Cwalina, C. D.; Liu, J. L.; Martin, D. C.; Mackay, M. E., Shear-Induced Solution Crystallization of Poly(3-hexylthiophene) (P3HT). Macromolecules 2014, 47 (10), 3343-3349. 10. Liu, Y.; Hu, S.; Liu, F. Q.; Wei, N.; Zhou, J. J.; Li, L.; Huo, H., Microfluidic shear-induced conformational transition and crystallization of P3HT in toluene. Polymer Crystallization 2020, 3 (2). 11. Ye, Z.; Yang, X. B.; Cui, H. N.; Qiu, F., Nanowires with unusual packing of poly-(3-hexylthiophene)s induced by electric fields. Journal of Materials Chemistry C 2014, 2 (33), 6773-6780. 12. Liu, Y. H.; Zhao, J. B.; Li, Z. K.; Mu, C.; Ma, W.; Hu, H. W.; Jiang, K.; Lin, H. R.; Ade, H.; Yan, H., Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nature Communications 2014, 5. 13. Guo, S.; Wang, W. J.; Herzig, E. M.; Naumann, A.; Tainter, G.; Perkh, J.; Muller-Buschbaum, P., Solvent-Morphology-Property Relationship of PTB7:PC71BM Polymer Solar Cells. Acs Applied Materials Interfaces 2017, 9 (4), 3740-3748. 14. Gomez, E. D.; Barteau, K. P.; Wang, H.; Toney, M. F.; Loo, Y.-L., Correlating the scattered intensities of P3HT and PCBM to the current densities of polymer solar cells. Chemical Communications 2011, 47 (1), 436-438. 15. Koch, F. P. V.; Rivnay, J.; Foster, S.; Rumbles, G.; Silva, C.; Salleo, A.; Nelson, J.; Smith, P.; Stingelin, N. et al., The impact of molecular weight on microstructure and charge transport in semicrystalline polymer Semiconductors poly(3-hexylthiophene), a model study. Progress in Polymer Science 2013, 38 (12), 1978-1989. 16. Clark, J.; Silva, C.; Friend, R. H.; Spano, F. C., Role of intermolecular coupling in the photophysics of disordered organic semiconductors: Aggregate emission in regioregular polythiophene. Physical Review Letters 2007, 98 (20), 206406. 17. Koehler, A.; Hoffmann, S. T.; Baessler, H., An Order-Disorder Transition in the Conjugated Polymer MEH-PPV. Journal of the American Chemical Society 2012, 134 (28), 11594-11601. 18. Collison, C. J.; Rothberg, L. J.; Treemaneekarn, V.; Li, Y., Conformational effects on the photophysics of conjugated polymers: A two species model for MEH-PPV spectroscopy and dynamics. Macromolecules 2001, 34 (7), 2346-2352. 19. So, W. Y.; Hong, J. Y.; Kim, J. J.; Sherwood, G. A.; Chacon-Madrid, K.; Werner, J. H.; Shreve, A. P.; Peteanu, L. A., Effects of Solvent Properties on the Spectroscopy and Dynamics of Alkoxy-Substituted PPV Oligomer Aggregates. Journal of Physical Chemistry B 2012, 116 (35), 10504-10513. 20. Peet, J.; Brocker, E.; Xu, Y. H.; Bazan, G. C., Controlled beta-phase formation in poly(9,9-di-n-octylfluorene) by processing with alkyl additives. Advanced Materials 2008, 20 (10), 1882-1885. 21. Knaapila, M.; Monkman, A. P., Methods for Controlling Structure and Photophysical Properties in Polyfluorene Solutions and Gels. Advanced Materials 2013, 25 (8), 1090-1108. 22. Scherf, U.; List, E. J. W., Semiconducting polyfluorenes - Towards reliable structure-property relationships. Advanced Materials 2002, 14 (7), 477-487. 23. Blundell, S. J. K. M. B., Concepts in Thermal Physics. Oxford University Press: 2008. 24. Panzer, F.; Bassler, H.; Kohler, A., Temperature Induced Order-Disorder Transition in Solutions of Conjugated Polymers Probed by Optical Spectroscopy. Journal of Physical Chemistry Letters 2017, 8 (1), 114-125. 25. Tsoi, W. C.; James, D. T.; Kim, J. S.; Nicholson, P. G.; Murphy, C. E.; Bradley, D. D. C.; Nelson, J.; Kim, J.-S., The Nature of In-Plane Skeleton Raman Modes of P3HT and Their Correlation to the Degree of Molecular Order in P3HT:PCBM Blend Thin Films. Journal of the American Chemical Society 2011, 133 (25), 9834-9843. 26. Balkanski, M.; Wallis, R. F.; Haro, E., Anharmonic effects in light scattering due to optical phonons in Silicon. Physical Review B 1983, 28 (4), 1928-1934. 27. Chen, H. Y.; Lin, C. W.; Chen, C. T.; Golder, J.; Lan, Y. B.; Wang, J. K., Polymer side-chain substituents elucidate thermochromism of benzodithiophene-dithiophenylacrylonitrile copolymers - polymer solubility correlation of thermochromism and photovoltaic performance. Polymer Chemistry 2017, 8 (24), 3689-3701. 28. Zen, A.; Saphiannikova, M.; Neher, D.; Grenzer, J.; Janietz, S.; Scherf, U.; Lieberwirth, I.; Wegner, G. et al., Effect of molecular weight on the structure and crystallinity of poly(3-hexylthiophene). Macromolecules 2006, 39 (6), 2162-2171. 29. Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Sclauzero, G.; Seitsonen, A. P.; Smogunov, A.; Umari, P.; Wentzcovitch, R. M. et al., Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of Physics-Condensed Matter 2009, 21 (39). 30. Sainbileg, B.; Lan, Y. B.; Wang, J. K.; Hayashi, M., Deciphering Anomalous Raman Features of Regioregular Poly(3-hexylthiophene) in Ordered Aggregation Form. Journal of Physical Chemistry C 2018, 122 (8), 4224-4231. 31. Cohen, M. L.; Schluter, M.; Chelikowsky, J. R.; Louie, S. G., Self-Consisitent Pseudopotential Method for Localized Configurations - Molecules. Physical Review B 1975, 12 (12), 5575-5579. 32. Troullier, N.; Martins, J. L., Efficient pseudopotentials for plane-wave calculations. Physical Review B 1991, 43 (3), 1993-2006. 33. Lee, K.; Murray, E. D.; Kong, L. Z.; Lundqvist, B. I.; Langreth, D. C., Higher-accuracy van der Waals density functional. Physical Review B 2010, 82 (8). 34. Grimme, S., Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry 2006, 27 (15), 1787-1799. 35. Barone, V.; Casarin, M.; Forrer, D.; Pavone, M.; Sambi, M.; Vittadini, A., Role and Effective Treatment of Dispersive Forces in Materials: Polyethylene and Graphite Crystals as Test Cases. Journal of Computational Chemistry 2009, 30 (6), 934-939. 36. Jorio, A.; Dresselhaus, M.; Saito, R.; Dresselhaus, G. F. Raman Spectroscopy in Graphene Related Systems, Wiley; VCH, Weinheim, 2011. 37. Allard, A.; Wirtz, L. Graphene on Metallic Substrates: Suppression of the Kohn Anomalies in the Phonon Dispersion. Nano Lett. 2010, 10, 4335-4340. 38. Zhang, X.; Tan, Q.-H.; Wu, J.-B.; Shi, W.; Tan, P.-H. Review on the Raman Spectroscopy of Different Types of Layered Materials. Nanoscale 2016, 8, 6435. 39. Baroni, S.; Resta, R., Ab Initio Calculation of the Low-Frequency Raman Cross-Section in Silicon. Physical Review B 1986, 33 (8), 5969-5971. 40. Gonze, X.; Allan, D. C.; Teter, M. P., Dilectric Tensor, Effective Charges, and Phnons om α-quartz by Variational Density-Functional Perturbation Theory. Physical Review Letters 1992, 68 (24), 3603-3606. 41. Giannozzi, P.; De Gironcoli, S.; Pavone, P.; Baroni, S., Ab Initio Calculation of Phonon Dispersion in Semiconductors. Physical Review B 1991, 43 (9), 7231-7242. 42. Lan, Y. B.; Sher, P. H.; Lee, C. K.; Pao, C. W.; Tsao, C. S.; Huang, Y. C.; Huang, P. T.; Wu, C. I.; Wang, J. K., Revealing Ordered Polymer Packing during Freeze-Drying Fabrication of a Bulk Heterojunction Poly(3-hexylthiophene-2,5-diyl): 6,6 -Phenyl-C61-butyric Acid Methyl Ester Layer: In Situ Optical Spectroscopy, Molecular Dynamics Simulation, and X-ray Diffraction. Journal of Physical Chemistry C 2017, 121 (27), 14826-14834. 43. Lee, C.-K.; Pao, C.-W.; Chu, C.-W., Multiscale molecular simulations of the nanoscale morphologies of P3HT: PCBM blends for bulk heterojunction organic photovoltaic cells. Energy Environmental Science 2011, 4 (10), 4124-4132. 44. Lee, C. K.; Hua, C. C.; Chen, S. A., Phase Transition and Gels in Conjugated Polymer Solutions. Macromolecules 2013, 46 (5), 1932-1938. 45. Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kale, L.; Schulten, K. Scalable Molecular Dynamics with NAMD. J. Comput. Chem. 2005, 26, 1781−1802. 46. Gao, Y.; Grey, J. K., Resonance Chemical Imaging of Polythiophene/Fullerene Photovoltaic Thin Films: Mapping Morphology-Dependent Aggregated and Unaggregated C=C Species. Journal of the American Chemical Society 2009, 131 (28), 9654-9662. 47. Tsoi, W. C.; James, D. T.; Kim, J. S.; Nicholson, P. G.; Murphy, C. E.; Bradley, D. D. C.; Nelson, J.; Kim, J.-S., The Nature of In-Plane Skeleton Raman Modes of P3HT and Their Correlation to the Degree of Molecular Order in P3HT:PCBM Blend Thin Films. Journal of the American Chemical Society 2011, 133 (25), 9834-9843. 48. Milani, A.; Brambilla, L.; Del Zoppo, M.; Zerbi, G., Raman dispersion and intermolecular interactions in unsubstituted thiophene oligomers. Journal of Physical Chemistry B 2007, 111 (6), 1271-1276. 49. Donohoo-Vallett, P. J.; Bragg, A. E., π-Delocalization and the Vibrational Spectroscopy of Conjugated Materials: Computational Insights on Raman Frequency Dispersion in Thiophene, Furan, and Pyrrole Oligomers. Journal of Physical Chemistry B 2015, 119 (8), 3583-3594. 50. Louarn, G.; Trznadel, M.; Buisson, J. P.; Laska, J.; Pron, A.; Lapkowski, M.; Lefrant, S., Raman spectroscopic studies of regioregular poly(3-alkylthiophenes). Journal of Physical Chemistry 1996, 100 (30), 12532-12539. 51. Farouil, L.; Alary, F.; Bedel-Pereira, E.; Heully, J. L., Revisiting the Vibrational and Optical Properties of P3HT: A Combined Experimental and Theoretical Study. Journal of Physical Chemistry A 2018, 122 (32), 6532-6545. 52. Brambilla, L.; Tommasini, M.; Botiz, I.; Rahimi, K.; Agumba, J. O.; Stingelin, N.; Zerbi, G., Regio-Regular Oligo and Poly(3-hexyl thiophene): Precise Structural Markers from the Vibrational Spectra of Oligomer Single Crystals. Macromolecules 2014, 47 (19), 6730-6739. 53. Razzell-Hollis, J.; Fleischli, F.; Jahnke, A. A.; Stingelin, N.; Seferos, D. S.; Kim, J. S., Effects of Side-Chain Length and Shape on Polytellurophene Molecular Order and Blend Morphology. Journal of Physical Chemistry C 2017, 121 (4), 2088-2098. 54. Brambilla, L.; Ferron, C. C.; Tommasini, M.; Hong, K.; Lopez Navarrete, J. T.; Hernandez, V.; Zerbi, G., Infrared and multi-wavelength Raman spectroscopy of regio-regular P3HT and its deutero derivatives. Journal of Raman Spectroscopy 2018, 49 (3), 569-580. 55. Sainbileg, B.; Lan, Y. B.; Wang, J. K.; Hayashi, M., Deciphering Anomalous Raman Features of Regioregular Poly(3-hexylthiophene) in Ordered Aggregation Form. Journal of Physical Chemistry C 2018, 122 (8), 4224-4231. 56. Sainbileg, B. First-Principles Investigations of Vibrational and Electronic properties of selected Nanomaterials. National Central University, Taoyuan County, Taiwan, 2018. 57. Tashiro, K.; Ono, K.; Minagawa, Y.; Kobayashi, M.; Kawai, T.; Yoshino, K., Structure and thermochromic solid-state phase-transition of poly-(3-alkylthiophene). Journal of Polymer Science Part B-Polymer Physics 1991, 29 (10), 1223-1233. 58. Tashiro, K.; Kobayashi, M.; Kawai, T.; Yoshino, K., Crystal structural change in poly(3-alkylthiophene)s induced by iodine doping as studied by an organized combination of X-ray diffraction, infrared/Raman spectroscopy and computer simulation techniques. Polymer 1997, 38 (12), 2867-2879. 59. Prosa, T. J.; Winokur, M. J.; Moulton, J.; Smith, P.; Heeger, A. J., X-ray structural studies of poly(3-alkylthiophenes) – an example of an inverse comb. Macromolecules 1992, 25 (17), 4364-4372. 60. Brinkmann, M.; Rannou, P., Effect of molecular weight on the structure and morphology of oriented thin films of regioregular poly(3-hexylthiophene) grown by directional epitaxial solidification. Adv. Funct. Mater. 2007, 17 (1), 101-108. 61. Kayunkid, N.; Uttiya, S.; Brinkmann, M., Structural Model of Regioregular Poly(3-hexylthiophene) Obtained by Electron Diffraction Analysis. Macromolecules 2010, 43 (11), 4961-4967. 62. Dudenko, D.; Kiersnowski, A.; Shu, J.; Pisula, W.; Sebastiani, D.; Spiess, H. W.; Hansen, M. R., A Strategy for Revealing the Packing in Semicrystalline pi-Conjugated Polymers: Crystal Structure of Bulk Poly-3-hexyl-thiophene (P3HT). Angewandte Chemie-International Edition 2012, 51 (44), 11068-11072. 63. Allard, A.; Wirtz, L., Graphene on Metallic Substrates: Suppression of the Kohn Anomalies in the Phonon Dispersion. Nano Letters 2010, 10 (11), 4335-4340. 64. Hestand, N. J.; Spano, F. C., Expanded Theory of H- and J-Molecular Aggregates: The Effects of Vibronic Coupling and Intermolecular Charge Transfer. Chemical Reviews 2018, 118 (15), 7069-7163. 65. Clark, J.; Silva, C.; Friend, R. H.; Spano, F. C., Role of intermolecular coupling in the photophysics of disordered organic semiconductors: Aggregate emission in regioregular polythiophene. Physical Review Letters 2007, 98 (20), 206406. 66. Panzer, F.; Sommer, M.; Baessler, H.; Thelakkat, M.; Koehler, A., Spectroscopic Signature of Two Distinct H-Aggregate Species in Poly(3-hexylthiophene). Macromolecules 2015, 48 (5), 1543-1553. 67. Spano, F. C., The Spectral Signatures of Frenkel Polarons in H- and J-Aggregates. Accounts of Chemical Research 2010, 43 (3), 429-439. 68. Spano, F. C.; Silva, C., H- and J-Aggregate Behavior in Polymeric Semiconductors. Annual Review of Physical Chemistry, 2014, 65, 477-500. 69. Rahimi, K.; Botiz, I.; Agumba, J. O.; Motamen, S.; Stingelin, N.; Reiter, G., Light absorption of poly(3-hexylthiophene) single crystals. RSC Advances 2014, 4 (22), 11121-11123. 70. Schmidt-Hansberg, B.; Sanyal, M.; Klein, M. F. G.; Pfaff, M.; Lemmer, U.; Barrena, E.; Schabel, W. et al., Moving through the Phase Diagram: Morphology Formation in Solution Cast Polymer-Fullerene Blend Films for Organic Solar Cells. ACS Nano 2011, 5 (11), 8579-8590. 71. Rohac, V.; Ruzicka, V.; Ruzicka, K.; Polednicek, M.; Aim, K.; Jose, J.; Zabransky, M., Recommended vapour and sublimation pressures and related thermal data for chlorobenzenes. Fluid Phase Equilibria 1999, 157 (1), 121-142. 72. Griffing, V.; Cargyle, M. A.; Corvese, L.; Eby, D., Temperature coefficients of viscosity of some halogen substituted organic compounds. Journal of Physical Chemistry 1954, 58 (11), 1054-1056. 73. Edward, J. T., Molecular volumes and the Stokes-Einstein equation. Journal of Chemical Education 1970, 47 (4), 261. 74. Panzer, F.; Bassler, H.; Kohler, A., Temperature Induced Order-Disorder Transition in Solutions of Conjugated Polymers Probed by Optical Spectroscopy. Journal of Physical Chemistry Letters 2017, 8 (1), 114-125. 75. Turner, S. T.; Pingel, P.; Steyrleuthner, R.; Crossland, E. J. W.; Ludwigs, S.; Neher, D., Quantitative Analysis of Bulk Heterojunction Films Using Linear Absorption Spectroscopy and Solar Cell Performance. Adv. Funct. Mater. 2011, 21 (24), 4640-4652. 76. Koehler, A.; Hoffmann, S. T.; Baessler, H., An Order-Disorder Transition in the Conjugated Polymer MEH-PPV. Journal of the American Chemical Society 2012, 134 (28), 11594-11601. 77. Chang, R.; Hsu, J. H.; Hayashi, M.; Yu, J.; Lin, S. H.; Chang, E. C.; Chuang, K. R.; Chen, S. A. et al., Experimental and theoretical investigations of absorption and emission spectra of the light-emitting polymer MEH-PPV in solution. Chemical Physics Letters 2000, 317 (1-2), 142-152. 78. Kuhn, W., Uber das absorptionsspektrum der polyene. Helvetica Chimica Acta 1948, 31 (6), 1780-1799. 79. Simpson, W. T., Resonance force theory of carotenoid pigments. Journal of the American Chemical Society 1955, 77 (23), 6164-6168. 80. Onipko, A.; Klymenko, Y.; Malysheva, L., Effect of length and geometry on the highest occupied molecular orbital lowest unoccupied molecular orbital gap of conjugated oligomers: An analytical Huckel model approach. Journal of Chemical Physics 1997, 107 (18), 7331-7344. 81. Martin, T. P.; Wise, A. J.; Busby, E.; Gao, J.; Roehling, J. D.; Ford, M. J.; Larsen, D. S.; Moule, A. J.; Grey, J. K., Packing Dependent Electronic Coupling in Single Poly(3-hexylthiophene) H- and J-Aggregate Nanofibers. Journal of Physical Chemistry B 2013, 117 (16), 4478-4487. 82. Baghgar, M.; Labastide, J.; Bokel, F.; Dujovne, I.; McKenna, A.; Barnes, A. M.; Pentzer, E.; Emrick, T.; Hayward, R.; Barnes, M. D., Probing Inter- and Intrachain Exciton Coupling in Isolated Poly(3-hexylthiophene) Nanofibers: Effect of Solvation and Regioregularity. Journal of Physical Chemistry Letters 2012, 3 (12), 1674-1679. 83. Koman, V. B.; Santschi, C.; Martin, O. J. F., Multiscattering-Enhanced Absorption Spectroscopy. Analytical Chemistry 2015, 87 (3), 1536-1543. 84. Scharsich, C.; Lohwasser, R. H.; Sommer, M.; Asawapirom, U.; Scherf, U.; Thelakkat, M.; Neher, D.; Kohler, A., Control of aggregate formation in poly(3-hexylthiophene) by solvent, molecular weight, and synthetic method. Journal of Polymer Science Part B-Polymer Physics 2012, 50 (6), 442-453. 85. Gierschner, J.; Cornil, J.; Egelhaaf, H. J., Optical bandgaps of π-conjugated organic materials at the polymer limit: Experiment and theory. Advanced Materials 2007, 19 (2), 173-191. 86. Yue, S.; Berry, G. C.; McCullough, R. D., Intermolecular association and supramolecular organization in dilute solution .1. Regioregular poly(3-dodecylthiophene). Macromolecules 1996, 29 (3), 933-939. 87. Theander, M.; Svensson, M.; Ruseckas, A.; Zigmantas, D.; Sundstrom, V.; Andersson, M. R.; Inganas, O., High luminescence from a substituted polythiophene in a solvent with low solubility. Chemical Physics Letters 2001, 337 (4-6), 277-283. 88. Lee, C.-K.; Pao, C.-W.; Chu, C.-W., Multiscale molecular simulations of the nanoscale morphologies of P3HT: PCBM blends for bulk heterojunction organic photovoltaic cells. Energy Environmental Science 2011, 4 (10), 4124-4132. 89. Lee, C. K.; Hua, C. C.; Chen, S. A., Phase Transition and Gels in Conjugated Polymer Solutions. Macromolecules 2013, 46 (5), 1932-1938. 90. Huang, D. M.; Faller, R.; Do, K.; Moule, A. J., Coarse-Grained Computer Simulations of Polymer/Fullerene Bulk Heterojunctions for Organic Photovoltaic Applications. Journal of Chemical Theory and Computation 2010, 6 (2), 526-537. 91. Schwarz, K. N.; Kee, T. W.; Huang, D. M., Coarse-grained simulations of the solution-phase self-assembly of poly(3-hexylthiophene) nanostructures. Nanoscale 2013, 5 (5), 2017-2027. 92. Collings, P. J.; Hird, M., Introduction to Liquid Crystals. Taylor Francis: Bristol, 1997. 93. Gomez, E. D.; Barteau, K. P.; Wang, H.; Toney, M. F.; Loo, Y.-L., Correlating the scattered intensities of P3HT and PCBM to the current densities of polymer solar cells. Chemical Communications 2011, 47 (1), 436-438. 94. Wu, Z. Y.; Petzold, A.; Henze, T.; Thurn-Albrecht, T.; Lohwasser, R. H.; Sommer, M.; Thelakkat, M., Temperature and Molecular Weight Dependent Hierarchical Equilibrium Structures in Semiconducting Poly(3-hexylthiophene). Macromolecules 2010, 43 (10), 4646-4653. 95. Kohn, P.; Rong, Z.; Scherer, K. H.; Sepe, A.; Sommer, M.; Mueller-Buschbaum, P.; Friend, R. H.; Steiner, U.; Huettner, S., Crystallization-Induced 10-nm Structure Formation in P3HT/PCBM Blends. Macromolecules 2013, 46 (10), 4002-4013. 96. Huang, P.-T.; Chou, C.-W.; Lin, B.-Y.; Shi, Z.-E.; Huang, Y.-J.; Chen, C.-T.; Cheng, C.-H.; Wang, J.-K., Controlling the morphology of poly(3-hexylthiophene)/methanofullerene film through a dynamic-cooling and freeze-drying process. Polymer International 2016, 65 (1), 66-71. 97. Chen, H. Y.; Lin, C. W.; Chen, C. T.; Golder, J.; Lan, Y. B.; Wang, J. K., Polymer side-chain substituents elucidate thermochromism of benzodithiophene-dithiophenylacrylonitrile copolymers - polymer solubility correlation of thermochromism and photovoltaic performance. Polymer Chemistry 2017, 8 (24), 3689-3701. 98. Chen, H. Y.; Wu, J. L.; Chen, C. T., Rare solvent annealing effective benzo(1,2-b:4,5-b ')dithiophene-based low band-gap polymer for bulk heterojunction organic photovoltaics. Chemical Communications 2012, 48 (7), 1012-1014. 99. Liang, Y. Y.; Yu, L. P., A New Class of Semiconducting Polymers for Bulk Heterojunction Solar Cells with Exceptionally High Performance. Accounts of Chemical Research 2010, 43 (9), 1227-1236. 100. Thompson, B. C.; Kim, Y. G.; McCarley, T. D.; Reynolds, J. R., Soluble narrow band gap and blue propylenedioxythiophene-cyanovinylene polymers as multifunctional materials for photovoltaic and electrochromic applications. Journal of the American Chemical Society 2006, 128 (39), 12714-12725. 101. Panzer, F.; Bassler, H.; Kohler, A., Temperature Induced Order-Disorder Transition in Solutions of Conjugated Polymers Probed by Optical Spectroscopy. Journal of Physical Chemistry Letters 2017, 8 (1), 114-125. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50220 | - |
dc.description.abstract | 共軛聚合物因其在軟性電子產品中的潛在應用而備受關注。然而,光電性能對功能分子的堆疊結構敏感。探測聚合物堆疊晶格常數依賴X 射線繞射,但是其無法解開晶格內結構細節。晚近使用光吸收和光致發光來探查共軛聚合物的聚集行為,未能進一步提供結構信息。本研究使用拉曼光譜通過振動特徵探測聚合物結構,研究典範共軛高分子P3HT 和複雜的低能隙高分子PBCN4 在降溫o-DCB中的聚集行為。 兩種高分子測得的拉曼光譜在很小的溫度範圍內表現出劇烈變化(光譜變窄和移動),對應於從孤立的無序狀態到有序聚集狀態的轉變。這種相變類型的行為已通過多尺度分子動力學模擬得到證實。在第一原理計算的幫助下,歸因了振動信號來源並確定堆疊組態的結構細節。這兩個成功的演示表明,拉曼光譜是揭密共軛聚合物聚集行為的強大工具,可應用於其他有機和生物系統。 | zh_TW |
dc.description.abstract | Conjugated polymers have drawn great attention because of their potential applications in flexible electronics. The optoelectronic performance is however sensitive to their packing configuration. Characterizing polymer packing have relied on X-ray diffraction that is however unable to unravel packing details. Optical absorption and photoluminescence have been lately used to characterize the aggregation behavior of conjugated polymers, but fail to provide structural information. Raman spectroscopy, probing polymer structure via its vibrational signatures, is used in this study to study the aggregation behaviors of a prototype conjugated polymer—P3HT—and a complicated low-bandgap one—PBCN4—in o-DCB upon cooling. The acquired Raman spectra of both polymers exhibit drastic changes—spectral narrowing and shifting—within a small temperature range, corresponding to a transition from isolated, disordered state to orderly aggregated state. Such transition-typed behavior was confirmed with multi-scaled molecular dynamics simulation. With the help from first-principles calculation, the vibrational signatures were assigned and the packing configuration was identified. These two successful demonstrations show that Raman spectroscopy is a power tool to reveal the aggregation behaviors of conjugated polymers and can be applied to other organic and biological systems. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T12:32:58Z (GMT). No. of bitstreams: 1 U0001-0502202120595100.pdf: 14754896 bytes, checksum: 7a33ac2769c16f314587d9044955b641 (MD5) Previous issue date: 2021 | en |
dc.description.tableofcontents | Contents 口試委員會審定書 I Acknowledgments II 中文摘要 III Abstract IV Chapter 1. Introduction 1 1.1 Roles of molecular packing in polymer electronics …………………………… 1 1.2 Characterization tools of molecular packing ………………………………… 3 1.3 Optical absorption and photoluminescence in polymer aggregation ………… 5 1.4 Raman spectroscopy in conjugated polymers ………………………… 7 1.5 Organization of the thesis ………………………………………………… 9 References ………………………………………………………………………… 9 Chapter 2. Experimental and Theoretical Methods 12 2.1 Optical spectroscopic setups ………………………………………………… 12 2.1.1 Raman setup 2.1.2 Photoluminescence setup 2.1.3 UV-Vis absorption setup 2.1.4 Sample stage 2.2 Sample preparation …………………………………………………………… 20 2.3 Optical experimental procedure …………………………………………… 23 2.4 X-ray diffraction ………………………………………………………… 25 2.5 Simulations …………………………………………………………………… 26 2.5.1 The first principles simulation 2.5.2 Multiscale molecular-dynamics simulation References ………………………………………………………………………… 30 Chapter 3. Revealing P3HT Aggregation with Optical Spectroscopy 33 3.1 Evolution of Raman spectrum of P3HT upon cooling …………………… 33 3.2 Deciphering Raman spectra of crystalline P3HT with first-principles simulation ………………………………………… 43 3.3 Evolution of optical absorption and photoluminescence spectrum of P3HT under upon cooling ………………………………………………………… 55 3.4 Extracting P3HT aggregation behaviors from spectroscopic traits ………… 58 3.4.1 Analysis with Raman spectroscopy 3.4.2 Analyses with optical absorption and photoluminescence 3.4.3 Ordered aggregation revealed with molecular dynamics simulation 3.5 Aggregation behavior of P3HT:PCBM upon cooling …………………… 72 3.6 Optical spectroscopy and X-ray diffraction of freeze-dried samples ……… 75 3.6.1 Optical studies 3.6.2 GIXRD studies References …………………………………………………………………… 83 Chapter 4. Revealing Aggregation Behaviors of Low-bandgap Polymer PBCN4 with Raman Spectroscopy 88 4.1 Introduction to PBCN4 and sample preparation ………………………… 89 4.2 Evolution of Raman spectrum of PBCN4 under cooling …………… 92 4.3 Assignment of Raman peaks of PBCN4 ………… 94 4.4 Extracting PBCN4 aggregation behavior with Raman spectroscopy ………… 96 References ………………………………………………………………………… 99 Chapter 5. Conclusions 100 Appendixes 103 A.1 Fitting results of P3HT in o-DCB Raman spectra …………………………… 103 A.2 Animations of PBCN4 vibration motions …………………………………… 108 A.3 Fitting results of PBCN4 in o-DCB Raman spectra …………………………… 111 | |
dc.language.iso | en | |
dc.title | 以拉曼光譜探究共軛高分子聚集行為 | zh_TW |
dc.title | Scrutinizing Aggregation Behaviors of Conjugated Polymers with Raman Spectroscopy | en |
dc.type | Thesis | |
dc.date.schoolyear | 109-1 | |
dc.description.degree | 博士 | |
dc.contributor.author-orcid | 0000-0001-5276-0149 | |
dc.contributor.coadvisor | 王俊凱(Juen-Kai Wang) | |
dc.contributor.oralexamcommittee | 林倫年(Michitoshi Hayashi),陳錦地(Chin-Ti Chen),包淳偉(Chun-Wei Pao) | |
dc.subject.keyword | 共軛高分子,拉曼光譜,聚集,分子堆疊對位, | zh_TW |
dc.subject.keyword | Conjugated polymer,Raman spectroscopy,aggregation,polymer packing, | en |
dc.relation.page | 115 | |
dc.identifier.doi | 10.6342/NTU202100616 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2021-02-07 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-0502202120595100.pdf 目前未授權公開取用 | 14.41 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。