請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50216
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳世雄(Shih-Hsiung Wu) | |
dc.contributor.author | Yi-Ting Chen | en |
dc.contributor.author | 陳宜廷 | zh_TW |
dc.date.accessioned | 2021-06-15T12:32:51Z | - |
dc.date.available | 2021-08-03 | |
dc.date.copyright | 2016-08-03 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-08-02 | |
dc.identifier.citation | 1. Iyer LM, Leipe DD, Koonin EV, & Aravind L (2004) Evolutionary history and higher order classification of AAA+ ATPases. J Struct Biol 146(1-2):11-31.
2. Snider J, Thibault G, & Houry WA (2008) The AAA+ superfamily of functionally diverse proteins. Genome Biol 9(4):216. 3. Striebel F, Kress W, & Weber-Ban E (2009) Controlled destruction: AAA+ ATPases in protein degradation from bacteria to eukaryotes. Curr Opin Struct Biol 19(2):209-217. 4. Wickner S, Maurizi MR, & Gottesman S (1999) Posttranslational quality control: folding, refolding, and degrading proteins. Science 286(5446):1888-1893. 5. Gottesman S, Wickner S, & Maurizi MR (1997) Protein quality control: triage by chaperones and proteases. Genes Dev 11(7):815-823. 6. Gottesman S & Maurizi MR (1992) Regulation by proteolysis: energy-dependent proteases and their targets. Microbiol Rev 56(4):592-621. 7. Goldberg AL (1992) The mechanism and functions of ATP-dependent proteases in bacterial and animal cells. Eur J Biochem 203(1-2):9-23. 8. Sauer RT, et al. (2004) Sculpting the proteome with AAA(+) proteases and disassembly machines. Cell 119(1):9-18. 9. Inobe T & Matouschek A (2008) Protein targeting to ATP-dependent proteases. Curr Opin Struct Biol 18(1):43-51. 10. Hershko A & Ciechanover A (1992) The ubiquitin system for protein degradation. Annu Rev Biochem 61:761-807. 11. Hochstrasser M (1996) Ubiquitin-dependent protein degradation. Annu Rev Genet 30:405-439. 12. Schmidt R, Bukau B, & Mogk A (2009) Principles of general and regulatory proteolysis by AAA+ proteases in Escherichia coli. Res Microbiol 160(9):629-636. 13. Baker TA & Sauer RT (2006) ATP-dependent proteases of bacteria: recognition logic and operating principles. Trends Biochem Sci 31(12):647-653. 14. Dougan DA, Truscott KN, & Zeth K (2010) The bacterial N-end rule pathway: expect the unexpected. Mol Microbiol 76(3):545-558. 15. Dulebohn D, Choy J, Sundermeier T, Okan N, & Karzai AW (2007) Trans-translation: the tmRNA-mediated surveillance mechanism for ribosome rescue, directed protein degradation, and nonstop mRNA decay. Biochemistry 46(16):4681-4693. 16. Bonnefoy E, Almeida A, & Rouviere-Yaniv J (1989) Lon-dependent regulation of the DNA binding protein HU in Escherichia coli. Proc Natl Acad Sci U S A 86(20):7691-7695. 17. Kuroda A, et al. (2001) Role of inorganic polyphosphate in promoting ribosomal protein degradation by the Lon protease in E. coli. Science 293(5530):705-708. 18. Tsilibaris V, Maenhaut-Michel G, & Van Melderen L (2006) Biological roles of the Lon ATP-dependent protease. Res Microbiol 157(8):701-713. 19. Sauer RT & Baker TA (2011) AAA+ proteases: ATP-fueled machines of protein destruction. Annu Rev Biochem 80:587-612. 20. Swamy KH & Goldberg AL (1981) E. coli contains eight soluble proteolytic activities, one being ATP dependent. Nature 292(5824):652-654. 21. Amerik A, et al. (1991) Site-directed mutagenesis of La protease. A catalytically active serine residue. FEBS Lett 287(1-2):211-214. 22. Neuwald AF, Aravind L, Spouge JL, & Koonin EV (1999) AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome res 9(1):27-43. 23. Lupas AN & Martin J (2002) AAA proteins. Curr Opin Struct Biol 12(6):746-753. 24. Smith CK, Baker TA, & Sauer RT (1999) Lon and Clp family proteases and chaperones share homologous substrate-recognition domains. Proc Natl Acad Sci U S A 96(12):6678-6682. 25. Hattendorf DA & Lindquist SL (2002) Analysis of the AAA sensor-2 motif in the C-terminal ATPase domain of Hsp104 with a site-specific fluorescent probe of nucleotide binding. Proc Natl Acad Sci U S A 99(5):2732-2737. 26. Ogura T & Wilkinson AJ (2001) AAA+ superfamily ATPases: common structure- diverse function. Genes cells 6(7):575-597. 27. Charette MF, Henderson GW, & Markovitz A (1981) ATP hydrolysis-dependent protease activity of the lon (capR) protein of Escherichia coli K-12. Proc Natl Acad Sci U S A 78(8):4728-4732. 28. Chin DT, Goff SA, Webster T, Smith T, & Goldberg AL (1988) Sequence of the lon gene in Escherichia coli. A heat-shock gene which encodes the ATP-dependent protease La. J Biol Chem 263(24):11718-11728. 29. Lin YC, et al. (2009) DNA-binding specificity of the Lon protease alpha-domain from Brevibacillus thermoruber WR-249. Biochem Biophys Res Commun 388(1): 62-66. 30. Chung CH & Goldberg AL (1982) DNA stimulates ATP-dependent proteolysis and protein-dependent ATPase activity of protease La from Escherichia coli. Proc Natl Acad Sci U S A 79(3):795-799. 31. Charette MF, Henderson GW, Doane LL, & Markovitz A (1984) DNA-stimulated ATPase activity on the Lon (CapR) protein. J Bacteriol 158(1):195-201. 32. Fu GK, Smith MJ, & Markovitz DM (1997) Bacterial protease Lon is a site-specific DNA-binding protein. J Biol Chem 272(1):534-538. 33. Goldberg AL, Moerschell RP, Chung CH, & Maurizi MR (1994) ATP-dependent protease La (lon) from Escherichia coli. Methods Enzymol 244:350-375. 34. Park SC, et al. (2006) Oligomeric structure of the ATP-dependent protease La (Lon) of Escherichia coli. Mol Cells 21(1):129-134. 35. Rudyak SG, Brenowitz M, & Shrader TE (2001) Mg2+-linked oligomerization modulates the catalytic activity of the Lon (La) protease from Mycobacterium smegmatis. Biochemistry 40(31):9317-9323. 36. Botos I, et al. (2004) Crystal structure of the AAA+ alpha domain of E. coli Lon protease at 1.9A resolution. J Struct Biol 146(1-2):113-122. 37. Melnikov EE, et al. (2008) Limited proteolysis of E. coli ATP-dependent protease Lon - a unified view of the subunit architecture and characterization of isolated enzyme fragments. Acta biochimica Polonica 55(2):281-296. 38. Allen RC, Popat R, Diggle SP, & Brown SP (2014) Targeting virulence: can we make evolution-proof drugs? Nat Rev Microbiol 12(4):300-308. 39. Clatworthy AE, Pierson E, & Hung DT (2007) Targeting virulence: a new paradigm for antimicrobial therapy. Nat Chem Biol 3(9):541-548. 40. Rasko DA & Sperandio V (2010) Anti-virulence strategies to combat bacteria- mediated disease. Nat Rev Drug Discov 9(2):117-128. 41. Takaya A, et al. (2003) Lon, a stress-induced ATP-dependent protease, is critically important for systemic Salmonella enterica serovar typhimurium infection of mice. Infect Immun 71(2):690-696. 42. Robertson GT, Kovach ME, Allen CA, Ficht TA, & Roop RM, 2nd (2000) The Brucella abortus Lon functions as a generalized stress response protease and is required for wild-type virulence in BALB/c mice. Mol Microbiol 35(3):577-588. 43. Cohn MT, et al. (2007) Contribution of conserved ATP-dependent proteases of Campylobacter jejuni to stress tolerance and virulence. Appl Environ Microbiol 73(24):7803-7813. 44. Lan L, Deng X, Xiao Y, Zhou JM, & Tang X (2007) Mutation of Lon protease differentially affects the expression of Pseudomonas syringae type III secretion system genes in rich and minimal media and reduces pathogenicity. Mol Plant Microbe Interact 20(6):682-696. 45. Cornelis GR (2006) The type III secretion injectisome. Nat Rev Microbiol 4(11):811-825. 46. Butler SM, Festa RA, Pearce MJ, & Darwin KH (2006) Self-compartmentalized bacterial proteases and pathogenesis. Mol Microbiol 60(3):553-562. 47. Raju RM, Goldberg AL, & Rubin EJ (2012) Bacterial proteolytic complexes as therapeutic targets. Nat Rev Drug Discov 11(10):777-789. 48. Bottcher T & Sieber SA (2008) Beta-lactones as specific inhibitors of ClpP attenuate the production of extracellular virulence factors of Staphylococcus aureus. J Am Chem Soc 130(44):14400-14401. 49. Bottcher T & Sieber SA (2009) Beta-lactones decrease the intracellular virulence of Listeria monocytogenes in macrophages. ChemMedChem 4(8):1260-1263. 50. Nikaido H (1998) Multiple antibiotic resistance and efflux. Curr Opin Microbiol 1(5):516-523. 51. Poole K (2007) Efflux pumps as antimicrobial resistance mechanisms. Ann Med 39(3):162-176. 52. Webber MA & Piddock LJ (2003) The importance of efflux pumps in bacterial antibiotic resistance. J Antimicrob Chemother 51(1):9-11. 53. Ling V (1997) Multidrug resistance: molecular mechanisms and clinical relevance. Cancer Chemother Pharmacol 40 Suppl:S3-8. 54. Lomovskaya O, et al. (2001) Identification and characterization of inhibitors of multidrug resistance efflux pumps in Pseudomonas aeruginosa: novel agents for combination therapy. Antimicrob Agents Chemother 45(1):105-116. 55. Piddock LJ (2006) Multidrug-resistance efflux pumps - not just for resistance. Nat Rev Microbiol 4(8):629-636. 56. Koronakis V, Eswaran J, & Hughes C (2004) Structure and function of TolC: the bacterial exit duct for proteins and drugs. Annu Rev Biochem 73:467-489. 57. Fralick JA (1996) Evidence that TolC is required for functioning of the Mar/AcrAB efflux pump of Escherichia coli. J bacteriol 178(19):5803-5805. 58. Borges-Walmsley MI, et al. (2003) Identification of oligomerization and drug-binding domains of the membrane fusion protein EmrA. J biol chem 278(15):12903-12912. 59. Nagakubo S, Nishino K, Hirata T, & Yamaguchi A (2002) The putative response regulator BaeR stimulates multidrug resistance of Escherichia coli via a novel multidrug exporter system, MdtABC. J bacteriol 184(15):4161-4167. 60. Kobayashi N, Nishino K, & Yamaguchi A (2001) Novel macrolide-specific ABC-type efflux transporter in Escherichia coli. J bacteriol 183(19):5639-5644. 61. White DG, Goldman JD, Demple B, & Levy SB (1997) Role of the acrAB locus in organic solvent tolerance mediated by expression of marA, soxS, or robA in Escherichia coli. J bacteriol 179(19):6122-6126. 62. Sulavik MC, Gambino LF, & Miller PF (1995) The MarR repressor of the multiple antibiotic resistance (mar) operon in Escherichia coli: prototypic member of a family of bacterial regulatory proteins involved in sensing phenolic compounds. Mol Med 1(4):436-446. 63. Griffith KL, Shah IM, & Wolf RE, Jr. (2004) Proteolytic degradation of Escherichia coli transcription activators SoxS and MarA as the mechanism for reversing the induction of the superoxide (SoxRS) and multiple antibiotic resistance (Mar) regulons. Mol Microbiol 51(6):1801-1816. 64. Alekshun MN, Levy SB, Mealy TR, Seaton BA, & Head JF (2001) The crystal structure of MarR, a regulator of multiple antibiotic resistance, at 2.3 A resolution. Nat Struct Biol 8(8):710-714. 65. Aono R, Tsukagoshi N, & Yamamoto M (1998) Involvement of outer membrane protein TolC, a possible member of the mar-sox regulon, in maintenance and improvement of organic solvent tolerance of Escherichia coli K-12. J bacteriol 180(4):938-944. 66. Okusu H, Ma D, & Nikaido H (1996) AcrAB efflux pump plays a major role in the antibiotic resistance phenotype of Escherichia coli multiple-antibiotic-resistance (Mar) mutants. J bacteriol 178(1):306-308. 67. Bhaskarla C, et al. (2016) Roles of Lon protease and its substrate MarA during sodium salicylate-mediated growth reduction and antibiotic resistance in Escherichia coli. Microbiology 162(5):764-776. 68. Grove A (2013) MarR family transcription factors. Curr Biol 23(4):R142-143. 69. Wilkinson SP & Grove A (2006) Ligand-responsive transcriptional regulation by members of the MarR family of winged helix proteins. Curr Issues Mol Biol 8(1):51-62. 70. Otani H, et al. (2016) The activity of CouR, a MarR family transcriptional regulator, is modulated through a novel molecular mechanism. Nucleic Acids Res 44(2):595-607. 71. Lomovskaya O & Lewis K (1992) Emr, an Escherichia coli locus for multidrug resistance. Proc Natl Acad Sci U S A 89(19):8938-8942. 72. Sun J, Deng Z, & Yan A (2014) Bacterial multidrug efflux pumps: mechanisms, physiology and pharmacological exploitations. Biochem Biophys Res Commun 453(2):254-267. 73. Webber MA & Piddock LJ (2001) Absence of mutations in marRAB or soxRS in acrB-overexpressing fluoroquinolone-resistant clinical and veterinary isolates of Escherichia coli. Antimicrob Agents Chemother 45(5):1550-1552. 74. Grkovic S, Brown MH, & Skurray RA (2001) Transcriptional regulation of multidrug efflux pumps in bacteria. Semin Cell Dev Biol 12(3):225-237. 75. Ramos JL, et al. (2005) The TetR family of transcriptional repressors. Microbiol Mol Biol Rev 69(2):326-356. 76. Brooun A, Tomashek JJ, & Lewis K (1999) Purification and ligand binding of EmrR, a regulator of a multidrug transporter. J bacteriol 181(16):5131-5133. 77. Grkovic S, Brown MH, & Skurray RA (2002) Regulation of bacterial drug export systems. Microbiol Mol Biol Rev 66(4):671-701, table of contents. 78. Stover CK, et al. (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406(6799):959-964. 79. Conover MS, et al. (2012) BpsR modulates Bordetella biofilm formation by negatively regulating the expression of the Bps polysaccharide. J bacteriol 194(2):233-242. 80. Dalrymple BP & Swadling Y (1997) Expression of a Butyrivibrio fibrisolvens E14 gene (cinB) encoding an enzyme with cinnamoyl ester hydrolase activity is negatively regulated by the product of an adjacent gene (cinR). Microbiology 143 ( Pt 4):1203-1210. 81. Arshad M, Goller CC, Pilla D, Schoenen FJ, & Seed PC (2016) Threading the Needle: Small-Molecule Targeting of a Xenobiotic Receptor to Ablate Escherichia coli Polysaccharide Capsule Expression Without Altering Antibiotic Resistance. J Infect Dis 213(8):1330-1339. 82. Whitfield C & Roberts IS (1999) Structure, assembly and regulation of expression of capsules in Escherichia coli. Mol Microbiol 31(5):1307-1319. 83. Wang TF & Wang AH (2006) Preparation of sticky-end PCR products and ligation into expression vectors for high-throughput screening of soluble recombinant proteins. CSH Protoc 2006(1). 84. Wang TF & Wang AH (2006) Preparation of vectors for high-throughput screening of soluble recombinant proteins. CSH Protoc 2006(1). 85. Gibson DG, et al. (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343-345. 86. Datsenko KA & Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97(12): 6640-6645. 87. Xiong A, et al. (2000) The EmrR protein represses the Escherichia coli emrRAB multidrug resistance operon by directly binding to its promoter region. Antimicrob Agents Chemother 44(10):2905-2907. 88. Hansen S, Lewis K, & Vulic M (2008) Role of global regulators and nucleotide metabolism in antibiotic tolerance in Escherichia coli. Antimicrob Agents Chemother 52(8):2718-2726. 89. Hirakawa H, Nishino K, Hirata T, & Yamaguchi A (2003) Comprehensive studies of drug resistance mediated by overexpression of response regulators of two-component signal transduction systems in Escherichia coli. J bacteriol 185(6): 1851-1856. 90. Lomovskaya O, Lewis K, & Matin A (1995) EmrR is a negative regulator of the Escherichia coli multidrug resistance pump EmrAB. J bacteriol 177(9):2328-2334. 91. Darwin AJ & Stewart V (1995) Nitrate and nitrite regulation of the Fnr-dependent aeg-46.5 promoter of Escherichia coli K-12 is mediated by competition between homologous response regulators (NarL and NarP) for a common DNA-binding site. J Mol Biol 251(1):15-29. 92. Perederina A, et al. (2004) Regulation through the secondary channel--structural framework for ppGpp-DksA synergism during transcription. Cell 118(3):297-309. 93. Hugovieux-Cotte-Pattat N & Robert-Baudouy J (1982) Regulation and transcription direction of exuR, a self-regulated repressor in escherichia coli K-12. J Mol Biol 156(1):221-228. 94. Goosen N & van de Putte P (1995) The regulation of transcription initiation by integration host factor. Mol Microbiol 16(1):1-7. 95. Weglenska A, Jacob B, & Sirko A (1996) Transcriptional pattern of Escherichia coli ihfB (himD) gene expression. Gene 181(1-2):85-88. 96. Aviv M, Giladi H, Schreiber G, Oppenheim AB, & Glaser G (1994) Expression of the genes coding for the Escherichia coli integration host factor are controlled by growth phase, rpoS, ppGpp and by autoregulation. Mol Microbiol 14(5):1021- 1031. 97. Dame RT, Wyman C, & Goosen N (2000) H-NS mediated compaction of DNA visualised by atomic force microscopy. Nucleic Acids Res 28(18):3504-3510. 98. Freire P, Moreira RN, & Arraiano CM (2009) BolA inhibits cell elongation and regulates MreB expression levels. J Mol Biol 385(5):1345-1351. 99. Wu RY, et al. (2003) Crystal structure of Enterococcus faecalis SlyA-like transcriptional factor. J Biol Chem 278(22):20240-20244. 100. Ferrari RG, et al. (2013) Expression of the marA, soxS, acrB and ramA genes related to the AcrAB/TolC efflux pump in Salmonella enterica strains with and without quinolone resistance-determining regions gyrA gene mutations. Braz J Infect Dis 17(2):125-130. 101. Higashitani A, Ishii Y, Kato Y, & Koriuchi K (1997) Functional dissection of a cell-division inhibitor, SulA, of Escherichia coli and its negative regulation by Lon. Mol Gen Genet 254(4):351-357. 102. Brooun A, Tomashek JJ, & Lewis K (1999) Purification and Ligand Binding of EmrR, a Regulator of a Multidrug Transporter. J Bacteriol 181(16):5131-5133. 103. Keiler KC, Waller PR, & Sauer RT (1996) Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science 271(5251):990-993. 104. Biran D, Gur E, Gollan L, & Ron EZ (2000) Control of methionine biosynthesis in Escherichia coli by proteolysis. Mol Microbiol 37(6):1436-1443. 105. Schuenemann VJ, et al. (2009) Structural basis of N-end rule substrate recognition in Escherichia coli by the ClpAP adaptor protein ClpS. EMBO Rep 10(5):508-514. 106. Blaszczak A, Georgopoulos C, & Liberek K (1999) On the mechanism of FtsH-dependent degradation of the sigma 32 transcriptional regulator of Escherichia coli and the role of the Dnak chaperone machine. Mol Microbiol 31(1):157-166. 107. Calloni G, et al. (2012) DnaK functions as a central hub in the E. coli chaperone network. Cell Rep 1(3):251-264. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50216 | - |
dc.description.abstract | 隨著抗生素的濫用導致致病菌演化成具有抗藥性的結果下,細菌感染造成的致死率逐年上升。近年來新興的抗致病因子概念開始發展,這項概念是藉由抑制致病菌中對宿主有害的致病因子,使這些致病菌在與體內的共生菌競爭結果下而被淘汰。Lon蛋白質水解酶屬於AAA+ 蛋白質家族,負責參與蛋白質的品質管理以及降解與生理調控和致病力相關的調節因子。然而,針對Lon蛋白酶的降解規則目前尚未研究透徹,這增加了鑑定Lon蛋白酶受質的困難。
在本篇研究中,我們以大腸桿菌K-12菌株為模型,發現EmrR蛋白和IhfB蛋白是Lon蛋白酶的受質。EmrR為多重抗生素輸出幫浦的調控蛋白,藉由研究大腸桿菌不同的生長階段,發現大腸桿菌在穩定期時EmrR蛋白會被Lon蛋白酶降解,同時在報導因子分析試驗 (reporter assay) 中我們也得到了相同結論。然而,利用不同大腸桿菌突變菌株,發現細菌對萘啶酸 (nalidixic acid) 的抗性與Lon蛋白酶的參與關係相當複雜,我們推論這個現象可能由許多不同因素參與,無法藉由單一蛋白的研究來解釋。除此之外,降解萘啶酸所引發的EmrR蛋白似乎並非單由Lon蛋白酶所主導。因此,我們認為Lon蛋白酶所主導的降解可能是由於在不同生長階段中DNA拓譜的改變而導致的結果。在蛋白質序列比對以及分子嵌合模擬中,我們假設EmrR蛋白的降解辨識序列 (degron) 可能位在N端或C端。另外,利用胞外蛋白質水解分析法以及圓二色光譜,我們認為Lon蛋白酶必須經由連接分子的協助來辨認EmrR蛋白,經由報導因子分析試驗後,發現DnaK蛋白有可能就是這個連接分子,這個結果提出一個伴護蛋白協助的蛋白降解現象。最後,我們也發現EmrR蛋白的表現有助於大腸桿菌感染真核細胞,這項新發現表示EmrR蛋白可望當作抑菌治療中的標的蛋白之一。 | zh_TW |
dc.description.abstract | With an alarming rise of antibiotic resistance in pathogenic bacteria, the number of casualties due to bacterial infection expediently increases. An emerging concept of anti-bacterial virulence has been developed. By compromising harmful effects of the virulent factors, the bacteria were disarmed and soon die out due to natural selection when competing for the resource with the “good” bacteria inhabited in our body. Lon protease, belonging to AAA+ (ATPase associated with a variety of cellular activities) superfamily, participates in the protein quality control and the degradation of several regulatory proteins crucial for well-regulated growth as well as virulence. So far, no degradation rule has been reported, and thus makes substrate screening difficult.
In this study, we used Escherichia coli K-12 as model and identified EmrR and IhfB as the substrates of Lon. EmrR is a negative regulator of the multidrug resistance (MDR) efflux pump EmrAB in E. coli. By growth phase-dependent data sampling, we observed the degradation of EmrR was growth phase-dependent, which was in good agreement with emrRAB-based reporter assay. By gene deletion studies, we found that Lon-mediated nalidixic acid resistance was highly complicated since this phenomenon is comprised of more than one factor at a time, which cannot be well-explained by single protein participation model. However, the addition of nalidixic acid seemed irrelevant to Lon-dependent EmrR degradation. Together with growth-phase degradation and NA addition results, the stability of EmrR might be originated from the different DNA topology during the different growth phase. Along with protein alignment and docking calculation, we hypothesized the degron (degradation signal) of EmrR might be situated at the N- or C-terminus. Through circular dichroism and in vitro degradation assay, we believed the recognition of EmrR by Lon should be adaptor-mediated. By deletion and reporter assays, we found DnaK might serve as the critical adaptor for this degradation event to occur. To summarize, we observed a unique “chaperone-assisted proteolysis” in Lon-dependent EmrR proteolysis. These findings provided the importance of the “cross-talk” between chaperones and proteases for the properly targeted degradation. Also, the newly identified function of cell invasion in EmrR offers a direction for future drug development. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T12:32:51Z (GMT). No. of bitstreams: 1 ntu-105-R03b46027-1.pdf: 7520907 bytes, checksum: de7fc2b510568dbb9b5a19cea8eeda8d (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 中文摘要 i
Abstract ii List of Contents iii List of Figures v List of Tables vi 1. Introduction 1 1.1 AAA+ superfamily and the AAA+ protease 1 1.2 Lon protease 4 1.3 Multiple-drug resistance 6 1.4 Multidrug efflux pumps 8 1.5 The local repressor EmrR 12 1.6 Aims and background of this study 15 2. Materials and Methods 16 2.1 Chemicals, antibodies, and reagents 16 2.2 Plasmids and cloning 17 2.3 Construction of in-frame gene deletion mutants by optimized high-throughput knockout method 24 2.4 In vivo degradation assay 28 2.5 Endogenous EmrR degradation 28 2.6 Western blotting 29 2.7 Protein expression and purification 29 2.8 EMSA analysis of EmrR and the DNA fragment of emrRAB promoter 31 2.9 Fluorescence reporter assay 31 2.10 Susceptibility of nalidixic acid 32 2.11 Native PAGE 33 2.12 Induction of EmrR by nalidixic acid 33 2.13 In vitro proteolysis assay 34 2.14 Circular Dichroism 34 2.15 Invasion assay 35 3. Results and Discussions 36 3.1 In vivo validation of ten potential substrates 36 3.2 The abundance of EmrR was affected by Lon-dependent degradation in stationary phase 40 3.3 Lon protease modulated the emrRAB promoter strength 42 3.4 Highly complicated regulatory network of nalidixic acid resistance in E.coli 45 3.5 Protein alignment reveals the N- or C-terminals might serve as the degron of EmrR for Lon-dependent proteolysis 48 3.6 Molecular simulation of nalidixic acid-EmrR complex reveals possible mechanism for nalidixic acid-induced DNA disassociation 50 3.7 The stability of EmrR was not “solely” Lon-dependent upon nalidixic acid treatment 53 3.8 Lon degrades EmrR through an adaptor-mediated proteolysis 56 3.9 The strength of emrRAB promoter was mitigated in dnaK deletion mutant 60 3.10 Overexpression of EmrR leads to more efficient invasion to eukaryotic cells 62 4. Reference 64 | |
dc.language.iso | en | |
dc.title | Lon蛋白水解酶降解大腸桿菌K-12中多重抗藥性輸出幫浦調控蛋白EmrR之機制研究 | zh_TW |
dc.title | Lon Protease-Dependent Proteolysis of EmrR, a Transcriptional Repressor of Multidrug Efflux Pump in Escherichia coli K-12 | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 梁博煌(Po-Huang Liang),花國鋒(Kuo-Feng Hua),林曉青(Hsiao-Ching Lin) | |
dc.subject.keyword | Lon蛋白?,致病因子,?諾酮抗藥性,多重抗藥性輸出幫浦, | zh_TW |
dc.subject.keyword | Lon protease,virulence,quinolone antibiotic resistance,MDR efflux pump, | en |
dc.relation.page | 72 | |
dc.identifier.doi | 10.6342/NTU201601779 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-08-03 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生化科學研究所 | zh_TW |
顯示於系所單位: | 生化科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 7.34 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。