Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50205
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳光鐘(Kuang-Chong Wu)
dc.contributor.authorChing-Wei Linen
dc.contributor.author林靖瑋zh_TW
dc.date.accessioned2021-06-15T12:32:30Z-
dc.date.available2021-08-24
dc.date.copyright2016-08-24
dc.date.issued2016
dc.date.submitted2016-08-03
dc.identifier.citationABAQUS, ABAQUS Analysis user’s manual version 6.10.1, Dasssault Systems Simulia, Providence, RI, USA, 2011.
Brebbia C. A., “The Boundary Element Method for Engineers”, London, Pentech Press, 1978
Bezine G. P., Boundary Integral Formulation for Plate Flexure with Arbitrary
Boundary Conditions, Mechanics Research Communications, 5, 197-206, 1978
Courant R., Variational Methods for the Solution of Problems of Equilibrium and Vibrations, Bulletin of the American Mathematical Society, 49, 1–23, 1943.
Cruse T. A., Numerical Solutions in Three Dimensional Elastostatics, International Journal of Solids and Structures, 5, 1259-1274, 1969.
Cheng Z. Q. and Reddy, J. N., Octet Formalism for Kirchhoff Anisotropic Plates, Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 458, 1499-1517, 2002.
Fredholm I., Sur une classe d'équations fonctionnelles, Acta Mathematica, 27, 365-390, 1903.
Green G., “An Essay on the Application of Mathematical Analysis to the Theories of Electricity and Magnetism”, Nottingham, T. Wheelhouse, 1828.
Gere J. M. and Goodno B. J., “Mechanics of Materials 7th Edition”, Cengage Learning, 2012.
Hwu C., Stroh-like Formalism for The Coupled Stretching-Bending Analysis of Composite, International Journal of Solids and Structures, 40, 3681-3705, 2003.
Hwu C., Some Explicit Expressions of Stroh-like Formalism for Coupled Stretching–Bending Analysis. International Journal of Solids and Structures, 47, 526-536, 2010.
Hwu C., “Anisotropic Elastic Plate”, New York, Springer, 2010.
Hrennikoff A., Solution of Problems in Elasticity by the Framework Method, Journal of Applied Mechanics, 8, 619–715, 1941.
Jaswon M. A., Integral Equation Methods in Potential Theory I, Proceedings of the Royal Society of London Series A, 275, 23-32, 1963.
Jones R. M., “Mechanics of Composite Materials”, Washington D.C., McGraw-Hill, 1975
Lekhnitskii S. G., “Anisotropic Plate”, New York, Gordon and Breach, 1968.
Lin P. C., Bending of Cantilever Rectangular Plate with Concentrated Load, Applied Mathematics and Mechanics, 3, 281-291,1982.
Li R., Zhong Y., Tian B., Du J., Exact Bending of Orthotropic Recatangular Cantilever Thin Plates Subjected to Arbitray Loads, International Applied Mechanics, 47, 131-143, 2011.
Rizzo F. J., An Integral Equation Approach to Boundary Value Problems of Classical Elastostatics, Quarterly of Applied Mathematics, 25, 83-95, 1967.
Sadd M. H., “Elasticity: Theory, Applications, and Numerics 2nd Edition”, Oxford, Academic Press, 2009.
Shi G. and Bezine G., A General Boundary Integral Formulation for the Anisotropic Plate Bending Problems, Journal of Composite Materials, 22, 694-716, 1988.
Timoshenko S. and Woinowsky-Krieger S., “Theory of Plates And Shells”, New York, McGraw-Hill, 1959.
Ting T.C.T., “Anisotropic Elasticity: Theory and Applications”, New York/Oxford: Oxford University Press, 1996.
Wu K. C., Chiu Y. T., and Hwu Z. H., A New Boundary Integral Equation Formulation for Linear Elastic Solids, Journal of Applied Mechanics, 59, 344-348, 1992.
Wu K. C. and Hsiao P. S., A New Boundary Integral Formulation for Bending of Anisotropic Plates, Acta Mechanica, in press, 2016..
Wu K. C. and Hsiao P. S., An Exact Solution for an Anisotropic Plate with an Elliptic Hole Under Arbitrary Remote Uniform Moments, Composites Part B: Engineering, 75, 281-287, 2015.
蔡宗諺,以邊界元素法分析含雙橢圓孔洞異向性彈板受彎矩作用之應力集中現象,國立台灣大學應用力學研究所碩士論文,2015.
蕭培需,一個用於分析異向彈性彎曲問題的新邊界積分法,國立台灣大學應用力學研究所碩士論文,2014.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50205-
dc.description.abstract本文使用Wu and Hsiao(2015)所提之邊界積分方程式,分析含孔洞之有限複合材料層板受力矩的力學反應,尤其是孔洞的應力放大現象。Wu and Hsiao(2015)所提之邊界積分方程式是以曲率為幾何參數,對於自由板的問題可得相當準確的數值結果,但對於一般邊界條件則不完全適用,因此本文另改以轉角為幾何參數,提出一個新的邊界積分方程式以補原積分方程式之不足。該邊界積分方程式是以柯西積分式為核心並使用古典層板理論和類似異向彈性力學中的史磋法理論作為推導的基礎。本文算例有自由板或懸臂板受彎矩作用的問題,考慮的層板則有正交性、單層異向性、雙層異向性三種。運用邊界積分方程式所得的數值均與有限元素法結果比對,以評估兩種數值方法的優缺點及適用的狀況。zh_TW
dc.description.abstractThis thesis uses the boundary integral equations proposed in Wu and Hsiao(2015) to analyze finite laminated plates with holes subjected to moments. Although the integral equations, which contain curvatures as geometric parameters, work well for free plates, they do not all apply to all boundary conditions. A new boundary integral formulation with rotations as parameters is proposed to remedy the issue. The formulation is based on a Stroh-Like formalism developed for the lamination theory with Cauchy integral formula. The numerical examples are a free plate or cantilever plate subjected to bending moments. The plates considered include homogeneous orthotropic, homogeneous anisotropic and two-layered anisotropic plates. The numerical results from boundary integral formulation are compared with those using finite element method to assess the advantages and disadvantages of two numerical methods.en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:32:30Z (GMT). No. of bitstreams: 1
ntu-105-R03543011-1.pdf: 4600302 bytes, checksum: cdbacd65865f2ef76ac4d80c5d564ba1 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
目錄 iv
圖目錄 vii
表目錄 xii
第1章 導論 1
1.1 研究動機與文獻回顧 1
1.2 本文大綱 3
第2章 層板理論與Stroh-Like理論 4
2.1 層板理論之基本假設 4
2.2 位移場之假設 4
2.3 應變場 5
2.4 組成律 5
2.5 靜平衡方程式 10
2.6 統御方程式 10
2.7 Stroh-Like 理論 11
第3章 解析解 19
3.1 橢圓孔上的旋轉角與曲率及應變 19
3.1.1 橢圓坐標系映射到單位圓坐標系 19
3.1.2 孔洞邊界上之應變與曲率 20
3.2 計算待定常數 24
3.3 橢圓孔上之力矩 25
3.4 橢圓孔上之應力 28
3.5 橢圓孔上之位移 29
第4章 數值方法 31
4.1 廣義柯西積分公式 31
4.2 邊界積分方程式 32
4.2.1 第一型 32
4.2.2 第二型 33
4.3 數值解法 35
4.3.1 第一型 35
4.3.2 第二型 37
4.4 ABAQUS求解流程 38
第5章 含圓孔自由板計算結果 40
5.1 含圓孔之無限板受彎矩 42
5.1.1 單層正交性 42
5.1.2 單層異向性 50
5.1.3 雙層異向性 54
5.2 含圓孔之無限板受扭矩 60
5.2.1 單層正交性 60
5.2.2 單層異向性 64
5.2.3 雙層異向性 69
5.3 含圓孔之有限板受彎矩 73
5.3.1 單層正交性 74
5.3.2 單層異向性 75
5.3.3 雙層異向性 77
5.4 含圓孔之有限板受扭矩 79
5.4.1 單層正交性 79
5.4.2 單層異向性 80
5.4.3 雙層異向性 82
5.5 以第一型之第二條方程式分析含孔洞之無限板 83
第6章 懸臂板數值結果 86
6.1 不含孔洞懸臂板 90
6.1.1 單層正交性 90
6.1.2 單層異向性 95
6.1.3 雙層異向性 96
6.2 含孔洞之懸臂板 99
6.2.1 單層正交性 99
6.2.2 單層異向性 103
6.2.3 雙層異向性 109
第7章 結論與未來展望 114
7.1 結論 114
7.2 未來展望 117
參考文獻 118
附錄 121
A. 邊界方程式與 之關係 121
B. 懸臂板計算結果 123
1. 集中力於自由端中心 123
i. 與Li等人(2011)做數值比較 123
ii. 討論T300 Carbon/5208Epoxy 126
2. 集中力於自由端角落 131
i. 與Li等人(2011)做數值比較 132
ii. 討論T300 Carbon/5208Epoxy 134
dc.language.isozh-TW
dc.subject複合材料層板zh_TW
dc.subject類史磋法zh_TW
dc.subject邊界積分方程式zh_TW
dc.subject複合材料層板zh_TW
dc.subject類史磋法zh_TW
dc.subject邊界積分方程式zh_TW
dc.subjectBoundary Integral Equationsen
dc.subjectLaminated Platesen
dc.subjectStroh-Like formalismen
dc.title含孔洞複合材料層板之邊界元素法分析zh_TW
dc.titleBoundary Element Analysis of a Laminated Composite Plate Containing Holesen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張正憲(Cheng-Hsien Chang),馬劍清(Chien-Ching Ma),胡潛濱(Chyan-Bin Hwu),陳世豪(Shih-Hao Chen)
dc.subject.keyword複合材料層板,類史磋法,邊界積分方程式,zh_TW
dc.subject.keywordLaminated Plates,Stroh-Like formalism,Boundary Integral Equations,en
dc.relation.page139
dc.identifier.doi10.6342/NTU201601841
dc.rights.note有償授權
dc.date.accepted2016-08-03
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
4.49 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved