Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50166
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉子銘(Tzu-Ming Liu)
dc.contributor.authorYu-Han Changen
dc.contributor.author張郁涵zh_TW
dc.date.accessioned2021-06-15T12:31:24Z-
dc.date.available2019-08-24
dc.date.copyright2016-08-24
dc.date.issued2016
dc.date.submitted2016-08-04
dc.identifier.citation[1] F. Durand and D. Valla, 'Assessment of prognosis of cirrhosis,' Semin Liver Dis, vol. 28, pp. 110-22, Feb 2008.
[2] F. Durand and D. Valla, 'Assessment of the prognosis of cirrhosis: Child–Pugh versus MELD,' Journal of Hepatology, vol. 42, pp. S100-S107, 4// 2005.
[3] 'Method for establishing noninvasive evaluation model for liver surgical treatment risks,' ed: Google Patents, 2012.
[4] H. Imamura, K. Sano, Y. Sugawara, N. Kokudo, and M. Makuuchi, 'Assessment of hepatic reserve for indication of hepatic resection: decision tree incorporating indocyanine green test,' Journal of Hepato-Biliary-Pancreatic Surgery, vol. 12, pp. 16-22, Feb 2005.
[5] H. Lau, K. Man, S. T. Fan, W. C. Yu, C. M. Lo, and J. Wong, 'Evaluation of preoperative hepatic function in patients with hepatocellular carcinoma undergoing hepatectomy,' British Journal of Surgery, vol. 84, pp. 1255-1259, Sep 1997.
[6] C. K. Hofer, S. Buhlmann, R. Klaghofer, M. Genoni, and A. Zollinger, 'Pulsed dye densitometry with two different sensor types for cardiac output measurement after cardiac surgery: a comparison with the thermodilution technique,' Acta Anaesthesiologica Scandinavica, vol. 48, pp. 653-657, May 2004.
[7] C. U. Niemann, C. S. Yost, S. Mandell, and T. K. Henthorn, 'Evaluation of the splanchnic circulation with indocyanine green pharmacokinetics in liver transplant patients,' Liver Transplantation, vol. 8, pp. 476-481, May 2002.
[8] C. M. Leevy, C. L. Mendenhall, W. Lesko, and M. M. Howard, 'Estimation of Hepatic Blood Flow with Indocyanine Green,' Journal of Clinical Investigation, vol. 41, pp. 1169-&, 1962.
[9] L. A. Yannuzzi, 'Indocyanine Green Angiography: A Perspective on Use in the Clinical Setting,' American Journal of Ophthalmology, vol. 151, pp. 745-751, May 2011.
[10] V. Saxena, M. Sadoqi, and J. Shao, 'Indocyanine green-loaded biodegradable nanoparticles: preparation, physicochemical characterization and in vitro release,' International Journal of Pharmaceutics, vol. 278, pp. 293-301, Jul 8 2004.
[11] T. Desmettre, J. M. Devoisselle, and S. Mordon, 'Fluorescence properties and metabolic features of indocyanine green (ICG) as related to angiography,' Survey of Ophthalmology, vol. 45, pp. 15-27, Jul-Aug 2000.
[12] T. Iijima, T. Aoyagi, Y. Iwao, J. Masuda, M. Fuse, N. Kobayashi, et al., 'Cardiac output and circulating blood volume analysis by pulse dye-densitometry,' Journal of Clinical Monitoring, vol. 13, pp. 81-89, Mar 1997.
[13] J. W. Severinghaus and P. B. Astrup, 'History of Blood-Gas Analysis,' International Anesthesiology Clinics, vol. 25, pp. 1-214, Win 1987.
[14] R. R. Anderson and J. A. Parrish, 'The Optics of Human-Skin,' Journal of Investigative Dermatology, vol. 77, pp. 13-19, 1981.
[15] R. B. Dorshow, J. E. Bugaj, B. D. Burleigh, J. R. Duncan, M. A. Johnson, and W. B. Jones, 'Noninvasive Fluorescence Detection of Hepatic and Renal Function,' Journal of Biomedical Optics, vol. 3, pp. 340-345, Jul 1998.
[16] B. Hollins, B. Noe, and J. M. Henderson, 'Fluorometric determination of indocyanine green in plasma,' Clin Chem, vol. 33, pp. 765-8, Jun 1987.
[17] H. S. Zeng, C. Macaulay, D. I. Mclean, and B. Palcic, 'Spectroscopic and Microscopic Characteristics of Human Skin Autofluorescence Emission,' Photochemistry and Photobiology, vol. 61, pp. 639-645, Jun 1995.
[18] B. H. Yuan, N. G. Chen, and Q. Zhu, 'Emission and absorption properties of indocyanine green in Intralipid solution,' Journal of Biomedical Optics, vol. 9, pp. 497-503, May-Jun 2004.
[19] J. M. Maarek, D. P. Holschneider, and J. Harimoto, 'Fluorescence of indocyanine green in blood: intensity dependence on concentration and stabilization with sodium polyaspartate,' J Photochem Photobiol B, vol. 65, pp. 157-64, Dec 31 2001.
[20] M. Minsky, 'Microscopy Apparatus,' 1957.
[21] M. Born and E. Wolf, Principles of Optics. England: Cambridge University Press, 1999.
[22] R. Yuste, F. Lanni, and A. Konnerth, Imaging neurons: a laboratory manual: Cold Spring Harbor Laboratory Press, 2000.
[23] R. D. Goldman and D. L. Spector, Live Cell Imaging: A Laboratory Manual: Cold Spring Harbor Laboratory Press, 2005.
[24] Confocal and Two-Photon Microscopy: Foundations, Applications and Advances. New York, 2002.
[25] M. Laurent, G. Johannin, N. Gilbert, L. Lucas, D. Cassio, P. X. Petit, et al., 'Power and Limits of Laser-Scanning Confocal Microscopy,' Biology of the Cell, vol. 80, pp. 229-240, 1994.
[26] R. W. Boyd, Nonlinear Optics. Boston: Academic Press, 1992.
[27] T. H. Maiman, 'Stimulated Optical Radiation in Ruby,' Nature, vol. 187, pp. 493-494, 1960.
[28] P. A. Franken, G. Weinreich, C. W. Peters, and A. E. Hill, 'Generation of Optical Harmonics,' Physical Review Letters, vol. 7, pp. 118-&, 1961.
[29] S. W. Chu, T. M. Liu, and C. K. Sun, 'Real-time second-harmonic-generation microscopy based on a 2-GHz repetition rate Ti : sapphire laser,' Optics Express, vol. 11, pp. 933-938, Apr 21 2003.
[30] S. W. Chu, S. Y. Chen, T. H. Tsai, T. M. Liu, C. Y. Lin, H. J. Tsai, et al., 'In vivo developmental biology study using noninvasive multi-harmonic generation microscopy,' Optics Express, vol. 11, pp. 3093-3099, Nov 17 2003.
[31] B. Valeur and M. N. Berberan-Santos, Molecular Fluorescence: Principles and Applications: Wiley, 2013.
[32] J. R. Lakowicz, Principles of Fluorescence Spectroscopy: Springer, 2007.
[33] J. R. Albani, Structure and Dynamics of Macromolecules: Absorption and Fluorescence Studies: Absorption and Fluorescence Studies: Elsevier Science, 2011.
[34] W. Denk, J. H. Strickler, and W. W. Webb, 'Two-photon laser scanning fluorescence microscopy,' Science, vol. 248, pp. 73-6, Apr 6 1990.
[35] A. K. Dunn, V. P. Wallace, M. Coleno, M. W. Berns, and B. J. Tromberg, 'Influence of optical properties on two-photon fluorescence imaging in turbid samples,' Applied Optics, vol. 39, pp. 1194-1201, Mar 1 2000.
[36] H. A. Haus, Waves and fields in optoelectronics: Prentice Hall, Incorporated, 1984.
[37] J. Squier and M. Muller, 'High resolution nonlinear microscopy: A review of sources and methods for achieving optimal imaging,' Review of Scientific Instruments, vol. 72, pp. 2855-2867, Jul 2001.
[38] J. F. Ward and G. H. C. New, 'Optical Third Harmonic Generation in Gases by a Focused Laser Beam,' Physical Review, vol. 185, pp. 57-&, 1969.
[39] Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, 'Nonlinear scanning laser microscopy by third harmonic generation,' Applied Physics Letters, vol. 70, pp. 922-924, Feb 24 1997.
[40] T. P. Habif, Clinical Dermatology: A Color Guide to Diagnosis and Therapy: Mosby, 2004.
[41] V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis: SPIE Optical Engineering Press, 2000.
[42] K. P. Nielsen, L. Zhao, J. J. Stamnes, K. Stamnes, and J. Moan, 'The Optics of Human Skin: Aspects Important for Human Health ' The Norwegian Academy of Science and Letters, 2008.
[43] A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, 'Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,' Journal of Physics D-Applied Physics, vol. 38, pp. 2543-2555, Aug 7 2005.
[44] S. H. Tseng, P. Bargo, A. Durkin, and N. Kollias, 'Chromophore concentrations, absorption and scattering properties of human skin in-vivo,' Optics Express, vol. 17, pp. 14599-14617, Aug 17 2009.
[45] I. S. Saidi, S. L. Jacques, and F. K. Tittel, 'Mie and Rayleigh Modeling of Visible-Light Scattering in Neonatal Skin,' Applied Optics, vol. 34, pp. 7410-7418, Nov 1 1995.
[46] S. L. Jacques, Origins of tissue optical properties in the UVA, Visible, and NIR regions vol. 2: Optical Society of America, 1996.
[47] K. P. Nielsen, L. Zhao, P. Juzenas, J. J. Stamnes, K. Stamnes, and J. Moan, 'Reflectance spectra of pigmented and nonpigmented skin in the UV spectral region,' Photochemistry and Photobiology, vol. 80, pp. 450-455, Nov-Dec 2004.
[48] A. Krishnaswamy and G. V. G. Baranoski, 'A Study on Skin Optics,' School of Computer Science, University of Waterloo, Canada2004.
[49] E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, 'Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,' Journal of Biomedical Optics, vol. 11, Nov-Dec 2006.
[50] M. C. Chan, T. M. Liu, S. P. Tai, and C. K. Sun, 'Compact fiber-delivered Cr : forsterite laser for nonlinear light microscopy,' Journal of Biomedical Optics, vol. 10, Sep-Oct 2005.
[51] N. Unno, M. Suzuki, N. Yamamoto, K. Inuzuka, D. Sagara, M. Nishiyama, et al., 'Indocyanine green fluorescence angiography for intraoperative assessment of blood flow: a feasibility study,' Eur J Vasc Endovasc Surg, vol. 35, pp. 205-7, Feb 2008.
[52] J. A. Cardillo, R. Jorge, R. A. Costa, S. M. T. Nunes, D. Lavinsky, B. D. Kuppermann, et al., 'Experimental selective choriocapillaris photothrombosis using a modified indocyanine green formulation,' British Journal of Ophthalmology, vol. 92, pp. 276-280, Feb 2008.
[53] R. G. Meeks and S. Harrison, Hepatotoxicology: Taylor & Francis, 1991.
[54] S. De Minicis, T. Kisseleva, H. Francis, G. S. Baroni, A. Benedetti, D. Brenner, et al., 'Liver carcinogenesis: rodent models of hepatocarcinoma and cholangiocarcinoma,' Dig Liver Dis, vol. 45, pp. 450-9, Jun 2013.
[55] S. A. Geller and L. M. Petrovic, Biopsy Interpretation of the Liver: Wolters Kluwer Health, 2012.
[56] R. D. Odze and J. R. Goldblum, Surgical Pathology of the GI Tract, Liver, Biliary Tract, and Pancreas: Saunders/Elsevier, 2009.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50166-
dc.description.abstract根據衛生署2014年調查的結果,癌症為台灣十大死因之首,而肝癌又是癌症中致死率第二高的,每年台灣都有超過一萬人死於肝病、肝硬化以及肝癌,因此提高肝癌治療的成功率是很重要的。肝癌治療的方式包括肝切除術、移植、化療或放療等等,其中,肝切除與移植能根治肝癌的機率較高。然而,並非所有的病患都適合做切除手術,若是術後的肝臟無法負擔全身的代謝量,會導致致命的肝衰竭現象,因此術前的肝功能評估極為重要。
目前主流的評估方法為靛氰綠測試,靛氰綠是一種只由肝臟代謝的染劑,藉由量測靛氰綠在血液中的滯留率來判斷肝功能好壞,以決定肝切除術的可行性及肝臟切除比例。一般而言,健康的肝臟能夠在注射靛氰綠15分鐘內,代謝掉90%的靛氰綠,但受損嚴重的肝在15分鐘內可能連60%的靛氰綠都無法代謝掉。傳統的測量方式使用具侵入性的抽血,人為影響大,且抽血只能取得單一時間點資料,無法連續的量測,較不準確。
本研究使用了光學方法,從體外量測皮膚表層血管中的靛氰綠螢光訊號,再推算出實際靛氰綠滯留量,以達到低背景訊號、連續監測及非侵入性的效果。此實驗分成兩階段確效,在第一階段中,我們同時監控雙光子螢光及三倍頻影像,使其能夠準確定位血管位置。在此階段中我們確認靛氰綠不會擴散至血管外,因此只收集血管內的螢光訊號是可行的,而動物實驗中測量出的靛氰綠滯留曲線也與傳統方法的結果一致:控制組中,15分鐘後的靛氰綠螢光強度不到初始強度的10%;而肝癌組中,15分鐘後的靛氰綠螢光強度還有初始強度的40%。在第二階段,我們致力於使用更低的靛氰綠劑量做出相同的結論,因此使用單光子雷射,並且移除了顯微鏡與掃描鏡系統,只量測單光子螢光訊號。由於此系統有良好的訊號收集效率,使得所注射的靛氰綠劑量能夠降低至1/10倍的醫院用劑量。
靛氰綠劑量的降低有三大優點:從技術層面上來看,低濃度的靛氰綠,其螢光強度與濃度呈線性關係,使得準確率提高;從實際層面上來看,節省價格昂貴的靛氰綠的用量,能夠使檢測成本降低;從安全層面上來看,低濃度的靛氰綠對人體的毒性較小,提升檢驗的安全性。此為本研究所致力追求的貢獻。
zh_TW
dc.description.abstractAccording to the investigation of the Ministry of Health and Welfare in 2014, cancer is the most common cause of death in Taiwan, and hepatic cancer is the second leading cause of cancer-related death. Over 10 thousands of people die of hepatic diseases, so it is essential to raise the survival rate in treatments to hepatic cancer. Methods of treatment to hepatic cancer include hepatectomy, liver transplant, chemotherapy, radiotherapy, etc. Hepatectomy and liver transplant are the most feasible methods to eradicate hepatic cancer. However, it is impossible to conduct hepatectomy on every patient. If the postoperative liver cannot afford the metabolism of the whole body, it will lead to liver failure which is immortal. Therefore, the preoperative assessment of liver function is of importance.
Currently, the standard assessment method is Indocyanine Green (ICG) clearance test, and ICG is a kind of dye which would be metabolized almost by the liver only. By measuring the retention rate of ICG in blood, doctors can evaluate liver functions in order to determine the feasibility of hepatectomy and the ratio of the liver to be resected. Generally, after 15-minute administration, the retention of ICG of healthy people will below 10%, but the retention of ICG of patients with severe hepatic diseases could be over 40%. To quantify ICG concentration, the traditional way is to draw blood after administration at 5, 10, 15 minutes and measure the ICG concentration in the blood samples by spectrophotometry. This method is invasive, discontinuous, and with human-caused errors, so it is more incorrect.
Developing a fluorescence-based detector system excited by a single photon laser, we are able to detect the ICG fluorescence noninvasively, and then calculate the retention time of ICG in blood. The advantages of this approach are noninvasively and continuously monitoring the ICG retention rate with high contrast. In the first step, we acquired the THG images and the ICG two-photon fluorescence images at the same time so that the imaging plane of blood vessels could be fixed. We ensured that ICG would not diffuse out of vessels, so it is feasible to collect the ICG fluorescence by large area excitation. The result showed that, in the control group, the ICG fluorescence intensity after 15-minute administration is lower than 10% of the initial intensity; in the HCC group, the intensity after 15-minute administration is over 40% of the initial intensity, which is consistent with the traditional method. In the second step, we transfer the design to single-photon excitation scheme. We used a single-photon laser as the light source and removed the telescope and the scanner parts. The only signal we detected came from the ICG fluorescence. Moreover, the efficiency of collecting signals of this system is high. As a result, the required dose of ICG can be lower to 1/10 times of the dose usually used in hospitals.
There are three major advantages of the reduction of the ICG dose. First, in terms of technique, the ICG fluorescence intensity is linearly dependent on the ICG concentration when the dose is as low as 0.116 mg/dl, and that improves the accuracy of assessment. Second, lower dose brings lower cost, saving the usage of expensive ICG is equivalent to reducing the cost. Third, lower ICG dose is less toxic to human body, therefore the assessment can be more safe. We anticipate this method in the future can be further applied not only to the hepatic assessment before liver resection surgery, but also to the postoperative evaluation of the effectiveness of liver transplant or resection surgery.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:31:24Z (GMT). No. of bitstreams: 1
ntu-105-R02548025-1.pdf: 2978040 bytes, checksum: cc91802ea2f3630aa60401ebc83c3958 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
目錄 v
圖目錄 vii
表目錄 ix
第一章 緒論.. 1
1.1 背景 1
1.2 肝功能評估技術 3
1.2.1 靛氰綠清除測試(ICG clearance test) 4
1.2.2 脈衝染料密度測定法 5
1.2.3 螢光量測法 6
1.3 研究動機與實驗設計 6
第二章 原理介紹 8
2.1 共軛焦顯微術 8
2.2 非線性光學顯微術 10
2.2.1 單光子螢光 vs. 雙光子螢光 12
2.2.2 二倍頻 vs. 三倍頻 14
2.3 人類皮膚光學特性 18
2.4 靛氰綠特性 20
2.5 肝臟與肝細胞癌 21
第三章 實驗設置 23
3.1 1230雷射系統 23
3.2 785雷射系統 25
3.3 超音波儀器 29
3.4 大鼠肝細胞癌模型 29
第四章 結果與討論 33
4.1 第一階段 33
4.2 靛氰綠濃度依存性實驗 44
4.3 第二階段 46
總結 52
參考文獻 53
dc.language.isozh-TW
dc.subject螢光zh_TW
dc.subject肝臟檢測zh_TW
dc.subject非侵入性zh_TW
dc.subject靛氰綠zh_TW
dc.subject肝臟檢測zh_TW
dc.subject非侵入性zh_TW
dc.subject靛氰綠zh_TW
dc.subject螢光zh_TW
dc.subjectICGen
dc.subjectliver assessmenten
dc.subjectfluorescenceen
dc.subjectnon-invasiveen
dc.subjectICGen
dc.subjectfluorescenceen
dc.subjectliver assessmenten
dc.subjectnon-invasiveen
dc.title利用靛氰綠螢光進行非侵入性的肝功能檢測zh_TW
dc.titleNoninvasive Liver Function Assessment by Use of
the Fluorescence of Indocyanine Green
en
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李百祺(Pai-Chi Li),黃凱文(Kai-Wen Huang)
dc.subject.keyword肝臟檢測,非侵入性,靛氰綠,螢光,zh_TW
dc.subject.keywordliver assessment,non-invasive,ICG,fluorescence,en
dc.relation.page58
dc.identifier.doi10.6342/NTU201601754
dc.rights.note有償授權
dc.date.accepted2016-08-04
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
2.91 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved