Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50160
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor孫岩章
dc.contributor.authorPei-Lin Kaoen
dc.contributor.author高佩琳zh_TW
dc.date.accessioned2021-06-15T12:31:14Z-
dc.date.available2016-08-24
dc.date.copyright2016-08-24
dc.date.issued2016
dc.date.submitted2016-08-04
dc.identifier.citation1. 中華民國植物病理學會。2002。台灣植物病害名彙。第四版。中華民國植物病理學會出版。386頁。
2. 玉田地。2001。除疫寶。網址:http://www.ag168.com/product/Op/prod_PAlist.htm。上網日期2016-07-06。
3. 安寶貞、劉瑞芬、蔡志濃。2010。近年來我國重大作物病害之發生及其診斷監測與防治研討會專刊。127-146頁。
4. 安寶貞。2001a。植物病害的非農藥防治品-亞磷酸。植病會刊 10:147-154頁。
5. 安寶貞。2001b。洋蘭保護。行政院農業委員會動植物防疫檢疫局。
6. 安寶貞。2002。植物疫病菌的診斷鑑定技術。植物重要防檢疫疫病診斷鑑定技術研討會專刊。111-120頁。
7. 安寶貞。2011。植物疫病菌的診斷鑑定技術。植物重要防疫檢疫病害診斷鑑定技術研習會專刊(一)。
8. 行政院農業委員會農業藥物毒物試驗所。2016a。農藥使用資訊系統. 檢自:http://pesticide.tactri.gov.tw/。上網日期2016-07-06。
9. 行政院農業委員會農業藥物毒物試驗所。2016b。植物保護手冊。檢自:http://www.tactri.gov.tw/wSite/ct?xItem=3691&ctNode=333&mp=11#cat4。上網日期2016-07-06。
10. 吳文希、鍾宜穎、林美圻。2000。土壤因子與拮抗菌對百合根腐病菌 (Rhizoctonia solani) 存活的影響。植物病理學會刊 3:123-130頁。
11. 吳信郁。2012。植物萃取物及生物製劑對胡瓜白粉病防治效應研究. 桃園農業改良場研究彙報。71:57-68頁。
12. 吳魁偉。2007。迷迭香根腐病之研究。國立臺灣大學植物病理與微生物學研究所碩士論文。
13. 呂理燊。1975。猝倒病和疫病菌兩屬病原菌在土壤中之生態。植保會刊 17:201-415頁。
14. 李敏郎。2011a。植物病原卵菌之抗藥性。有害生物抗藥性研討會專刊。191-204頁。
15. 李敏郎。2011b。農藥的種類介紹。檢自:http://www.tactri.gov.tw/wSite/public/Attachment/f1380524820626.pdf。上網日期2016-07-06。
16. 林宗俊、鄭可大、黃振文。2002。丁香及其主成分防治甘藍苗立枯病的功效。植物病理學會刊 11(4):189-198頁。
17. 林俊義、安寶貞、張清安、羅朝村、謝廷芳。2004。作物病蟲害之非農藥防治(再版)。行政院農業委員會農業試驗所出版。58頁。
18. 林益昇、吳瑞香。1985. Phytophthora melonis在水田裡之生態及防治。植物保護學會會刊 27:257-266頁。
19. 林筑蘋。2009。亞磷酸誘導植物抗病機制之初探。國立臺灣大學植物病理與微生物學研究所碩士論文。
20. 馬芮玲。2006。薰衣草根腐病之發生與防治。國立屏東科技大學熱帶農業暨國際合作系碩士論文。
21. 張元聰、王仕賢、王裕權。2002。西洋香草介紹(十二)薰衣草。農業世界 232:111-118頁。
22. 張定霖、周明燕。薰衣草之栽培與利用。2003。種苗科技專訊 43:11-15頁。
23. 張定霖。2003。香藥草植物種苗開發與利用-戀戀香草鄉展示活動紀要。種苗科技專訊 42:12-20頁.
24. 陳任芳。2008。非農藥防治資材-亞磷酸之防病機制及應用。花蓮區農業專訊 63:5-8頁。
25. 陳任芳。2009。植物萃取液對作物病害防治之應用。花蓮區農業專訊 69:12-17頁。
26. 陳怡如。2004。甜薰衣草、齒葉薰衣草與‘Rex’迷迭香之扦插程序對移植盆栽的生長效應。國立臺灣大學園藝學研究所碩士論文。
27. 陳思羽。2011。腐霉菌引起薰衣草根腐病之研究。臺灣大學植物病理與微生物學研究所碩士論文。
28. 陳隆鐘、賴學珍、李崇正、鍾依紋、安寶貞。1998。環境因子對荔枝露疫病菌菌絲生長之影響。植物病理學會刊 7:128-133頁。
29. 曾國珍。2009。土壤含水量和水分境況。土壤與肥料分析手冊(二)—第二篇 土壤物理性質分析。陳仁炫、鄒裕民編著。中華土壤肥料學會編印。50-63頁。
30. 曾德賜。2015。農藥藥理與應用:殺菌劑。 藝軒圖書出版社。166頁。
31. 黃秀華。2004。土壤水分潛勢與作物病害的關係。臺中區農業改良場特刊 68:38頁。
32. 黃雅玲。2002。南部地區薰衣草栽培模式之探討。高雄區農業改良場年報 90:74頁。
33. 廖松淵、陳清義。1990a。乾旱處理對大豆氣孔形態發生之影響。中華農學會報 新151:36-46頁。
34. 廖松淵、陳清義。1990b。乾旱處理對大豆氣孔運動之影響及其耐旱性之關係。中華農學會報 新151:47-60頁。
35. 廖松淵、陳清義。1992。大豆滲透壓與耐旱性之關係。中華農學會報 新158: 19-28頁。
36. 蔡月夏。2004。薰衣草栽培與利用。花蓮區農業專訊 49:13-16頁。
37. 蔡幸君。2002。台灣薰衣草疫病。植物病理學會刊 11:229-32頁。
38. 蔡智賢、吳一言、陳清義。1994。大豆、玉米及高粱對水分不足之反應性—長期乾旱對大豆、玉米及高粱葉片下表皮細胞及氣孔之影響。中華農學會報 新168:49-61頁。
39. 謝廷芳、黃晉興、謝麗娟、胡敏夫、柯文雄。2005。植物萃取液對植物病原真菌之抑菌效果。植物病理學會會刊 14:59-66頁。
40. 謝廷芳、杜金池、蔡武雄。1990。溫濕度對百合白絹病發生之影響。中華農業研究 39:315-324頁。
41. 羅朝村、黃秀華。2003。土壤水分潛勢與作物病害之管理。農業世界 238:26-32頁。
42. Álvarez, L. A., Pérez-Sierra, A., Armengol, J., and García-Jiménez, J. 2007. Characterization of Phytophthora nicotianae isolates causing collar and root rot of lavender and rosemary in Spain. J. Plant Pathol. 89(2): 261-264.
43. Ann, P. J., Hsieh, T. F., Tsai, J. N., Wang, I. T., and Lin, C. Y. 2000. A simple method for use of phosphorous acid and the spectra of disease control. Plant Pathol. Bull. 9: 179.
44. Bienapfl, J. C., and Balci, Y. 2014. Movement of Phytophthora spp. in Maryland’s nursery trade. Plant Dis. 98: 134-144.
45. Brent, K. J., Hollomon, D. W. 2007. Fungicide Resistance in Crop Pathogens: How Can it Be Managed? FRAC Monograph No. 1. 2nd ed. Fungicide Resistance Action Committee. Brussels, Belgium.
46. Cacciola, S. O., Agosteo, A. M., Pennisi, G. E., and Magnano di San Lio, G. 2003. First Report of Phytophthora palmivora on Grevillea spp. in Italy. Plant Dis. 87(8): 1006.
47. Cheng, S. S., Liu, J. Y., Chang, E. H., and Chang, S. T. 2008. Antifungal activity of cinnamaldehyde and eugenol congeners against wood-rot fungi. Bioresource technology 99(11): 5145-5149.
48. Cho, J. Y., Gyung, J. C., Lee, S. W., Kyoung, S. J., Lim, H. K., Lim, C. H., Sun, O. L., Kwang, Y. C., and Kim, J. C. 2006. Antifungal activity against Colletotrichum spp. of curcuminoids isolated from Curcuma longa L. rhizomes. Journal of Microbiology and Biotechnology 16(2): 280-285.
49. Cohen, Y., and Coffey, M. D. 1986. Systemic fungicides and the control of Oomycetes. Annu. Rev. Phytopathol. 24: 311–338.
50. Cooke, A., Drenth, J. M., Duncan, G., Wagels, C. M. Brasier. 2000. A molecular phylogeny of Phytophthora and related oomycetes. Fungal Genet. Biol. 30: 17–32
51. Daayf, F., Schmitt, A., and Belanger, R. R. 1995. The effects of plant extracts of Reynoutra sachalinensis on powdery mildew development and leaf physiology of long English cucumber. Plant Dis. 79: 557-580.
52. Das, K., Tiwari, R., and Shrivastava, D. 2010. Techniques for evaluation of medicinal plant products as antimicrobial agents: Current methods and future trends. Journal of Medicinal Plants Research 4(2): 104-111.
53. Davino, S., Cacciola, S. O., Pennisi, A. M., and Li Destri Nicosia, M. G. 2002. Phytophthora palmivora a new pathogen of lavender in Italy. Plant Dis. 86(5): 561.
54. DeBell, D. S., Hook, D. D., McKee, W. H., and Askew, J. L. 1984. Growth and Physiology of Loblolly Pine Roots Under Various Water Table Level and Phosphorus Treatments. For. Sci. 30: 705-714.
55. Dervis, S., Arslan, M., Serce, C. U., Soylu, S., and Uremis, I. 2011. First report of a root rot caused by Phytophthora palmivora on Lavandula angustifolia in Turkey. Plant Dis. 95: 1035.
56. Duniway, J. M. 1975. Limiting influence of low water potential on the formation of sporangia by Phytophthora drechsleri in soil. Phytopathol. 65: 1089-1093.
57. Duniway, J. M. 1979. Water relations of water molds. Rev. Phytopathol. 17: 431-463.
58. Else, M. A., Janowiak, F., Atkinson, C. J., and Jackson, M. B. 2009. Root signals and stomatal closure in relation to photosynthesis, chlorophyll a fluorescence and adventitious rooting of flooded tomato plants. Ann. Bot. 103: 313-323.
59. Erwin, D. C., and Ribeiro, O. K. 1996. Phytophthora Diseases Worldwide. American Phytopathological Society. 562 pp.
60. Faedda, R., Cacciola, S. O., Pane, A., Szigethy, A., Bakonyi, J., and Man in’t Veld, W. A. 2013. Phytophthora × pelgrandis causes root and collar rot of Lavandula stoechas in Italy. Plant Dis. 97: 1091-1096.
61. Ghimire, S. R., Richardson, P. A., Kong, P., Hu, J., Lea-Cox, J. D., Ross, D. S., Moorman, G. W., and Hong, C. 2011. Distribution and diversity of Phytophthora species in nursery irrigation reservoir adopting water recycling system during winter months. J. Phytopathol. 159: 713-719.
62. Gullino, M. L., Minuto, A., Mocioni, M., and Garibaldi, A. 2000. Chemical control of Phytophthora nicotianae var. parasitica on pot grown lavender in Northern Italy. Atti delle Giornate Fitopatologiche vol 2: 329-333
63. Ho, H. H., Ann, P. J., and Chang, H. S. 1995. The Genus Phytophthora in Taiwan. Institude of Botany, Academia Sinica Monograph, series No.15, Institude of Botany, Academia Sinica, Taipei.
64. Jordan, A. M., Calvo, M. C. and Segura, J. 1998. Micropropagation of adult Lavandula dentataplants. J. Hort. Sci. Biotech. 73(1): 93-96.
65. Levy, M. 1998. Lavandula. In: Ball, V. (ed.). Ball Red Book(16th). Ball Publishing.
66. Liao, C. T. and Lin, C. H.. 2001. Physiological adaptation of crop plants to flooding stress. Proc. Natl. Sci. Counc. ROC 25: 148-157.
67. Long, J. 1998. Herbs. In: Ball, V. (ed.). Ball RedBook(16th). Ball Publishing.
68. Macintire, W., Winterberg, S., and Harbin, L. 1950. Fertilizer evaluation of certain phosphorus, phosporous and phosphoric materials by means of pot cultures. Agronomy Journal 42: 543-549.
69. Malajczuk, N. and Theodorou, C. 1979. Influence of water potential on growth and cultural characteristics of Phytophthora cinnamomi. Tran. Br. Myco. Soc. 72(1): 15-18.
70. Maloy, O. C. 1993. Plant Disease Control: Principles and Practice. John Wiley & Sons, Inc., New York. USA. 346pp.
71. Massago, H., Yoshikawa, M., and Fukada, M. 1977. Selective inhibition of Pythium spp. on a medium for direct isolation of Phytophthora spp. from soils and plants. Phytopathology 67: 425-428.
72. McCoy, J. A. 2002. Lavender history, taxonomy and production. Mountain Horticultural Crops Research and Extension Center.
73. Niu, G., Rodriguez, D. S., and Mackay, W. 2008. Growth and physiological responses to drought stress in four oleander clones. Journal of the American Society for Horticultural Science. 133(2): 188-196.
74. Orlikowski, L. B., and Valjuskaite, A. 2007. New record of Phytophthora root and stem rot of Lavendula angustifolia. Acta Mycol. 42: 193-198.
75. Paik, S. B., Kyung, S. H., Kim, J. J., and Oh, Y. S. 1996. Effect of bioactive substance extracted from Rheum undulatum on control of cucumber powdery mildew. Korean J. Plant Pathol. 12: 85-90.
76. Pottorff, L.P., amd Panter, K. L. 1997. Survey of Pythium and Phytophthora spp. in Irrigation Water Used by Colorado Commercial Greenhouses. HortTech. 7: 153-155.
77. Putnam, M. L. 1991. Root rot of lavender caused by Phytophthora nicotianae. Plant Pathology 40: 480-482.
78. Raj, K., and Shukla, D. S. 1996. Evaluation of some innovatives vis-à-vis powdery mildew of opium poppy incited Erysiphe polygoni. J. Living World 3: 12-17.
79. Rickard, D. A. 2000. Review of phosphorus acid and its salts as fertilizer materials. Journal of Plant Nutrition 23: 161-180.
80. Sommers, L. E., Harris, R. F., Dalton, F. N., and Gardner, W. R. Gardner. 1970. Water potential relations of three root-infecting Phytophthora species. Phytopathology 60: 932-934.
81. Song, L., Ding, J. Y., Tang, C., and Yin, C. H. 2007. Compositions and biological activities of essential oils of Kadsura longepedunculata and Schisandra sphenanthera. The American Journal of Chinese Medicine 35(2): 353-364.
82. Tucker, A. O. and T. Debaggio. 2000. Lavender. In: The big book of herbs. A comprehensive illustrated reference to herbs of flavor and fragrance. Interweave Press, USA. 314-338.
83. Wu, C. L., Chien, S. C., Wang, S. Y., Kuo, Y. H., and Chang, S. T. 2005. Structure-activity relationships of cadinane-type sesquiterpene derivatives against wood-decay fungi. Holzforschung 59(6): 620-627.
84. Yang, X., Ma, X., Yang, L., Yu, D., Qian, Y., and Ni, H. 2009. Efficacy of Rheum officinale liquid formulation on cucumber powdery mildew. Crop Protection 28(12): 1031-1035.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50160-
dc.description.abstract薰衣草(Lavandula spp.)屬唇形科(Lamiaceae)薰衣草屬(Lavandula)之植物,皆為芳香的常綠灌木或亞灌木,原產於地中海沿岸,性喜冷涼乾燥環境,主要分布在法國、西班牙及義大利。自從台灣由國外引入薰衣草栽培後,薰衣草常因台灣夏季高溫多雨而不利生長,一般多認為是因為夏季高溫及淹水此兩種環境因素使薰衣草栽培不易,以至於薰衣草無法順利度夏。但本研究及過往之報告已指出,薰衣草於入夏後易被Phytophthora nicotianae感染根部而造成根腐疫病,罹患根腐疫病的薰衣草,可發現根部有褐化現象,嚴重者地上部逐漸萎凋、葉子轉為灰綠色進而全株枯死。本研究亦探討栽培環境對薰衣草根腐病發病生態之影響,以及篩選出除了現行防治藥劑以外之非農藥防治資材。本研究所得之薰衣草根腐疫病分離株經柯霍氏法則測試其病原性,再以分子生物學鑑定後,確認Phytophthora nicotianae為薰衣草根腐疫病之病原菌。將此病原菌以不同溫度培養,發現菌絲可於16℃~37℃生長,最適生長溫度為22℃。以不同溫度處理觀察薰衣草根腐疫病病害發展中,發現病原菌可於溫度20℃侵染薰衣草,且隨溫度提升至35℃,疾病嚴重度也隨之提升;而當溫度提升至40℃,未接種病原菌之薰衣草在二週後仍保持健康,顯示薰衣草難以度夏之主因為根腐疫病等病害而非高溫本身。在土壤水潛勢對薰衣草根腐疫病病害之影響方面,以三種不同土壤水潛勢處理,薰衣草根腐疫病之發病率及疾病嚴重度皆無差異,而土壤水潛勢較低且未接種病原菌之薰衣草則會呈現輕微旱害病徵。在淹水環境對薰衣草根腐疫病病害發展之影響試驗,顯示淹水組薰衣草根腐疫病之發病率及疾病嚴重度在第三天時較不淹水者嚴重,但五天後二者已無差異。在非農藥防治資材之研究中,發現五種中草藥植物酒精萃取,都可以有效抑制病原菌遊走子發芽及菌絲生長,但實際應用於盆栽試驗時則未見顯著防治效果。在盆栽防治試驗方面,以丁香萃取液及五倍子萃取液防治效果較好,但其效果仍不及亞磷酸中和液及除疫寶。亞磷酸中和液不論在接種前或接種後處理都有良好的防治效果,其中以稀釋500倍於接種前7天施用之防治效果最佳,可使疾病嚴重度低於11%;接種後立即施用可使疾病嚴重度低於22%。除疫寶稀釋500倍於接種前7天施用可使疾病嚴重度低於6%。而就亞磷酸中和液及除疫寶兩者配置方式及保存方式比較,以除疫寶之配製方式最為簡便,且原液保存方式較不受環境影響而降解。在九種殺菌劑抑制菌絲生長之影響中,抑制效果最顯著之殺菌劑為滅達樂、達滅芬、嘉賜銅、福賽得及銅快得寧。建議選用滅達樂及達滅芬作為薰衣草根腐疫病菌之治療性殺菌劑,但滅達樂及達滅芬已有其他卵菌類病害之抗藥性紀錄,需輔以其他不同機制之卵菌殺菌劑使用。zh_TW
dc.description.abstractLavandula (common name lavender) is a flowering and aromatic shrub in the mint family, Lamiaceae. Lavender was derived from temperate area such as the Mediterranean countries, and mainly distributed over France, Spain and Italy. It prefers the dry and cool weather. Since lavender introduced from abroad, it was observed that the hot and humid environment in summer in Taiwan is not suitable for lavender to grow. It is thought that the hot and humid environment make lavender not easy to overcome the summer. This study and previous reports, however, show that lavender is frequently infected by Phytophthora nicotianae, and the root rot disease is the key problem in summer. This disease can cause the browning root rot , the discolored leaves and plant wilt. The severely infected plants will die. This study is also aimed to identify whether the environmental condition influence the occurrence of lavender root rot. Furthermore, several non-pesticide material, such as phosphorus acid and herbal plant extracts are also treated for their role in controlling the root rot disease. Through the pathogenicity test and molecular identification, we accomplish the Koch’s postulates of the disease caused by Phytophthora nicotianae. Culturing the pathogen at different temperature showed that the pathogen grows best at 22℃, although the myceliumcan grow at temperature range from 16℃ to 37℃. The study of lavender root rot disease at different temperature showed that the pathogen could infect the host lavender at 20℃ and the disease severity increased at high temperature of 35℃. The non-inoculated lavender still keep healthy at 40℃ for two weeks. It shows that the wilt and death of lavender in summer is caused by root rot disease rather than high temperature. The study of lavender root rot disease at different water potential showed that the three levels of water potential make no significant difference to disease incidence and severity, although the non-inoculated lavender appeared a slight drought injury in low water potential. The study of lavender root rot disease in flooding situation showed that the disease incidence and severity in flooding is less serious than non-flooding in three days, but it make no difference between both three days and five days. The non-pesticide control study showed that five plant extracts could inhibit the zoospore germination and mycelial growth significantly, but they didn’t have good effectiveness in the pot plant test. In the plot plant test, the neutralized phosphorous acid solution(NPA) and phosphoric acid had better effectiveness than the ethanol extract of clove and galla rhois. No matter pre-inoculated or post-inoculated, the sprayed NPA showed good effectiveness in reducing the disease. The NPA at 500X reduced the disease severity to 11% in pot plant test aftere pre-applied at seven days prior to inoculation, and reduced to 22% in pot plant test when applied after inoculation. The pre-application of phosphoric acid at 500X reduced the severity to 6% when applied before inoculation. Furthermore, the application of phosphoric acid is easier than NPA, and can not be affected by environment factors. Nine fungicides were treated for their inhibition effects on the pathogen. Among them, Metalaxyl, dimethomorph, kasugamycin+copper oxychloride, fosetyl-aluminium and copper hydroxide + oxine-copper showed good inhibition in the mycelial growth test. The application of metalaxyl and dimethomorph recommended for controling the disease. However, it is reported that both has fungicide resistance problems. Therefore, they should be rotated with different fungicide of different mechanisms of action.en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:31:14Z (GMT). No. of bitstreams: 1
ntu-105-R02633016-1.pdf: 4079246 bytes, checksum: 621176517a6e3ffc182781b26e8ee7d9 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents中文摘要 i
Summary iii
目錄 v
表目錄 viii
圖目錄 x
第一章 前言 1
第二章 前人研究 3
一、薰衣草之概說及栽培歷史 3
二、薰衣草根腐病害 4
三、疫病菌概說 5
四、薰衣草根腐病與環境及寄主之關係 6
(一) 溫度對薰衣草根腐病之影響 6
(二) 水潛勢對薰衣草根腐病之影響 6
五、薰衣草根腐病防治方式 8
(一) 化學防治法 8
(二) 亞磷酸中和液 8
(三) 植物萃取液 10
第三章 材料與方法 11
一、臺灣田間及盆栽薰衣草之病害調查 11
二、薰衣草根腐病病原菌之分離及鑑定 11
(一) 薰衣草根腐病病原菌之分離及初步鑑定 11
(二) 薰衣草根腐病分離株之分子生物學鑑定 12
(三) 薰衣草根腐病病原菌之保存及培養 13
三、薰衣草根腐疫病菌分離株之病原性測定 13
(一) 供試健康薰衣草之栽種 13
(二) 薰衣草根腐疫病菌分離株之病原性測定 14
四、溫度對薰衣草根腐疫病分離株菌絲生長之影響 15
五、環境因子對薰衣草根腐疫病病害發展之影響 16
(一) 不同溫度對薰衣草根腐疫病病害發展之影響 16
(二) 土壤水潛勢對薰衣草根腐疫病病害發展之影響 20
(三) 淹水環境對薰衣草根腐疫病病害發展之影響 22
六、薰衣草根腐疫病之非農藥防治 24
(一) 非農藥防治資材之取得 24
(二) 植物萃取液對游走子發芽抑制之試驗 26
(三) 植物萃取液對菌絲生長抑制之試驗 27
(四) 植物萃取液對薰衣草根腐疫病之盆栽防治試驗 27
七、殺菌劑對薰衣草根腐疫病菌絲生長抑制試驗 28
第四章 結果 30
一、臺灣田間及盆栽薰衣草之病害調查 30
二、薰衣草根腐病病原菌之分離及鑑定 34
(一) 薰衣草根腐病病原菌之分離及初步鑑定 34
(二) 薰衣草根腐病分離株之分子生物學鑑定 39
三、薰衣草根腐疫病菌分離株之病原性測定 47
(一) 供試健康薰衣草之栽種 47
(二) 薰衣草根腐疫病菌分離株之病原性測定 48
四、溫度對薰衣草根腐病分離株菌絲生長之影響 51
五、環境因子對薰衣草根腐疫病病害發展之影響 53
(一) 不同溫度對薰衣草根腐疫病病害發展之影響 53
(二) 土壤水潛勢對薰衣草根腐病病害發展之影響 55
(三) 淹水環境對薰衣草根腐疫病病害發展之影響 57
六、薰衣草根腐疫病之非農藥防治 59
(一) 植物萃取液對薰衣草根腐疫病游走子發芽之抑制試驗 59
(二) 植物萃取液對薰衣草根腐疫病菌菌絲生長抑制試驗 64
(三) 植物萃取液對薰衣草根腐疫病之盆栽防治試驗 69
七、殺菌劑對根腐疫病菌菌絲生長抑制試驗 71
第五章 討論 75
參考文獻 81
dc.language.isozh-TW
dc.title薰衣草根腐疫病發病生態及非農藥防治之研究zh_TW
dc.titleStudy on epidemiology of lavender root rot and its non-pesticide controlen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張東柱,楊秀珠,楊爵因
dc.subject.keyword薰衣草,根腐疫病,疫病菌,土壤水潛勢,淹水,非農藥防治,zh_TW
dc.subject.keywordlavender,root rot disease,Phytophthora,water potential,non-pesticide control,en
dc.relation.page88
dc.identifier.doi10.6342/NTU201601759
dc.rights.note有償授權
dc.date.accepted2016-08-04
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
3.98 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved