Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50135
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor李世光(Chih-Kung Lee)
dc.contributor.authorMeng-Wei Liuen
dc.contributor.author劉孟緯zh_TW
dc.date.accessioned2021-06-15T12:30:36Z-
dc.date.available2016-08-24
dc.date.copyright2016-08-24
dc.date.issued2016
dc.date.submitted2016-08-04
dc.identifier.citation[1] A. P. Turner, 'Biosensors: sense and sensibility,' Chemical Society Reviews, vol. 42, pp. 3184-3196, 2013.
[2] '2014醫療產業趨勢https://www.itri.org.tw/chi/Content/NewsLetter/Contents.aspx?SiteID=1&MmmID=620605426331276153&MSid=620616217066766337 '.
[3] J. Homola, S. S. Yee, and G. Gauglitz, 'Surface plasmon resonance sensors: review,' Sensors and Actuators B: Chemical, vol. 54, pp. 3-15, 1999.
[4] J. Mitchell, 'Small molecule immunosensing using surface plasmon resonance,' Sensors, vol. 10, pp. 7323-7346, 2010.
[5] 'http://landing1.gehealthcare.com/Biacore8k.html.'
[6] K. A. Willets and R. P. Van Duyne, 'Localized surface plasmon resonance spectroscopy and sensing,' Annu. Rev. Phys. Chem., vol. 58, pp. 267-297, 2007.
[7] L. C. Clark and C. Lyons, 'Electrode systems for continuous monitoring in cardiovascular surgery,' Annals of the New York Academy of sciences, vol. 102, pp. 29-45, 1962.
[8] D. Wang, G. Chen, H. Wang, W. Tang, W. Pan, N. Li, et al., 'A reusable quartz crystal microbalance biosensor for highly specific detection of single-base DNA mutation,' Biosensors and Bioelectronics, vol. 48, pp. 276-280, 2013.
[9] H. Wohltjen, 'Mechanism of operation and design considerations for surface acoustic wave device vapour sensors,' Sensors and Actuators, vol. 5, pp. 307-325, 1984.
[10] B. Xie, M. Mecklenburg, B. Danielsson, O. Öhman, and F. Winquist, 'Microbiosensor based on an integrated thermopile,' Analytica chimica acta, vol. 299, pp. 165-170, 1994.
[11] A. Newman, K. Hunter, and W. Stanbro, 'The capacitive affinity sensor: a new biosensor,' in Proceedings of the Second International Meeting on Chemical Sensors, Bordeaux, France, 1986, pp. 596-598.
[12] J. S. Daniels and N. Pourmand, 'Label‐free impedance biosensors: Opportunities and challenges,' Electroanalysis, vol. 19, pp. 1239-1257, 2007.
[13] R. F. Taylor, I. G. Marenchic, and E. J. Cook, 'An acetylcholine receptor-based biosensor for the detection of cholinergic agents,' Analytica Chimica Acta, vol. 213, pp. 131-138, 1988.
[14] R. F. Taylor, I. G. Marenchic, and R. H. Spencer, 'Antibody-and receptor-based biosensors for detection and process control,' Analytica Chimica Acta, vol. 249, pp. 67-70, 1991.
[15] V. M. Mirsky, M. Riepl, and O. S. Wolfbeis, 'Capacitive monitoring of protein immobilization and antigen–antibody reactions on monomolecular alkylthiol films on gold electrodes,' Biosensors and Bioelectronics, vol. 12, pp. 977-989, 1997.
[16] M. Jie, C. Y. Ming, D. Jing, L. S. Cheng, F. Jun, and C. Y. Xiang, 'An electrochemical impedance immunoanalytical method for detecting immunological interaction of human mammary tumor associated glycoprotein and its monoclonal antibody,' Electrochemistry communications, vol. 1, pp. 425-428, 1999.
[17] S.-J. Ding, B.-W. Chang, C.-C. Wu, M.-F. Lai, and H.-C. Chang, 'Electrochemical evaluation of avidin–biotin interaction on self-assembled gold electrodes,' Electrochimica acta, vol. 50, pp. 3660-3666, 2005.
[18] H. Raether, Surface plasmons on smooth surfaces: Springer, 1988.
[19] C. Eagen and W. Weber, 'Modulated surface-plasmon resonance for adsorption studies,' Physical Review B, vol. 19, p. 5068, 1979.
[20] H. E. de Bruijn, B. S. Altenburg, R. P. Kooyman, and J. Greve, 'Determination of thickness and dielectric constant of thin transparent dielectric layers using surface plasmon resonance,' Optics communications, vol. 82, pp. 425-432, 1991.
[21] U. Jönsson, L. Fägerstam, B. Ivarsson, B. Johnsson, R. Karlsson, K. Lundh, et al., 'Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology,' Biotechniques, vol. 11, pp. 620-627, 1991.
[22] A. Severs, R. Schasfoort, and M. Salden, 'An immunosensor for syphilis screening based on surface plasmon resonance,' Biosensors and Bioelectronics, vol. 8, pp. 185-189, 1993.
[23] V. Silin and A. Plant, 'Biotechnological applications of surface plasmon resonance,' Trends in Biotechnology, vol. 15, pp. 353-359, 1997.
[24] R. Green, J. Davies, M. Davies, C. Roberts, and S. Tendler, 'Surface plasmon resonance for real time in situ analysis of protein adsorption to polymer surfaces,' Biomaterials, vol. 18, pp. 405-413, 1997.
[25] H. L. Rieder, Interventions for tuberculosis control and elimination: International Union Against Tuberculosis and Lung Disease Paris, 2002.
[26] D. Menzies, M. Pai, and G. Comstock, 'Meta-analysis: new tests for the diagnosis of latent tuberculosis infection: areas of uncertainty and recommendations for research,' Annals of internal medicine, vol. 146, pp. 340-354, 2007.
[27] D. L. Cohn, R. J. O’Brien, L. J. Geiter, F. Gordin, E. Hershfield, and C. Horsburgh, 'Targeted tuberculin testing and treatment of latent tuberculosis infection,' MMWR Morb Mortal Wkly Rep, vol. 49, pp. 1-54, 2000.
[28] 李正中, '薄膜光學與鍍膜技術,' 1999.
[29] 李舒昇, '以拋物面鏡為基礎之表面電漿共振儀研究生物晶片上分子反應介面之親和力,' 博士論文,國立台灣大學應用力學研究所, 2004.
[30] S. Szunerits, A. Shalabney, R. Boukherroub, and I. Abdulhalim, 'Dielectric coated plasmonic interfaces: their interest for sensitive sensing of analyte-ligand interactions,' Reviews in Analytical Chemistry, vol. 31, pp. 15-28, 2012.
[31] A. Otto, 'Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,' Zeitschrift für Physik, vol. 216, pp. 398-410, 1968.
[32] 'https://en.wikipedia.org/wiki/Surface_plasmon_resonance.'
[33] E. Kretschmann and H. Raether, 'Notizen: radiative decay of non radiative surface plasmons excited by light,' Zeitschrift für Naturforschung A, vol. 23, pp. 2135-2136, 1968.
[34] J. W. Goodman, Introduction to Fourier optics: Roberts and Company Publishers, 2005.
[35] D. Cullen and C. Lowe, 'A direct surface plasmon—polariton immunosensor: Preliminary investigation of the non-specific adsorption of serum components to the sensor interface,' Sensors and Actuators B: Chemical, vol. 1, pp. 576-579, 1990.
[36] A. Brecht and G. Gauglitz, 'Label free optical immunoprobes for pesticide detection,' Analytica chimica acta, vol. 347, pp. 219-233, 1997.
[37] 劉齡雅, '以熱泳效應提升電化學阻抗感測器靈敏度之研究與開發,' 碩士,國立台灣大學工程科學及海洋工程學研究所, 2015.
[38] D. A. Skoog and D. M. West, Principles of instrumental analysis vol. 158: Saunders College Philadelphia, 1980.
[39] 吳文中, '高性能量測系統之高速訊號處理平台,' 碩士,國立臺灣大學應用力學硏究所, 1997.
[40] Y.-D. Su, S.-J. Chen, and T.-L. Yeh, 'Common-path phase-shift interferometry surface plasmon resonance imaging system,' Optics letters, vol. 30, pp. 1488-1490, 2005.
[41] J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, 'Self-assembled monolayers of thiolates on metals as a form of nanotechnology,' Chemical reviews, vol. 105, pp. 1103-1170, 2005.
[42] 白泽生, 刘竹琴, and 徐红, '几种液体的折射率与其浓度关系的经验公式,' 延安大学学报: 自然科学版, vol. 23, pp. 33-36, 2004.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50135-
dc.description.abstract肺結核是一種傳染性極強的疾病,全球的潛在患者佔全世界人口的三分之一。就目前而言潛伏性的結核病的檢測是經由通過刺激的 T 細胞來抓取血液中的肺結核抗原:丙型干擾素(Interferon-gama)來達成。
在本論文中開發了一種以拋物面鏡為設計的機構,具有量測表面電漿子共振技術(Surface Plasmon Resonance, SPR)、橢偏儀以及干涉是顯微鏡的功能,並以 SPR 為本研究光學量測的技術來分析抗體與抗原的反應。為了研究同一平台中不同生物檢測技術的交叉比較,本研究還加入了電化學(Electrochemical impedance spectroscopy, EIS)這個以量測電化學阻抗的方法。而生物晶片的表面藉由流道設計後,將表面官能化,以成為可與肺結核抗原鍵結的高檢測特異性表面,為了使機台校正速度快速及檢測時的準確性,動力學的設計也被包含在內,以確保實驗的重複性,藉由整合SPR即時檢測技術以及EIS阻抗分 析方法在同一實驗平台上,進行同步檢測並比較所得實驗結果。最後,更以EIS結果及新開發的光學檢測平台獲得的光學信號來作交叉校準。初步實驗結果表明,這個新開發完成,且具有進行準確性SPR和EIS測量性能的量測平台,的確可提供多種創新生醫檢測技術。
zh_TW
dc.description.abstractTuberculosis is a highly contagious disease such that global latent patient can be as high as one third of the world population. Currently, latent tuberculosis was diagnosed by stimulating the T cells to produce the biomarker of tuberculosis, i.e., interferon-γ. In this thesis, we developed a paraboloidal mirror enabled surface plasmon resonance (SPR) interferometer that has the potential to also integrate ellipsometry, and interferometer to analyze the antibody and antigen reaction. To examine the feasibility of developing a platform for cross calibrating the performance and detection limit of various bio-detection techniques, electrochemical impedance spectroscopy (EIS) method was also implemented onto a biochip that can be incorporated into this newly developed platform.
The microfluidic channel of the biochip was functionalized by coating the interferon-γ antibody so as to enhance the detection specificity. To facilitate the processing steps needed for using biochip to detect various antigen of vastly different concentrations, a kinematic mount was also developed to guarantee the biochip re-positioning accuracy whenever the biochip was removed and placed back for another round of detection. Before EIS can be utilized, SPR was also adopted to observe the real-time signals on the computer in order to analyze the success of each biochip processing steps such as functionalization, wash, etc.
Finally, the EIS results and the optical signals obtained from the newly developed optical detection platform was cross-calibrated. Preliminary experimental results demonstrate the accuracy and performance of SPR and EIS measurement done at the newly integrated platform.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:30:36Z (GMT). No. of bitstreams: 1
ntu-105-R03543020-1.pdf: 4819741 bytes, checksum: 4d9bbe44cc6c9e83237730c7706aa56b (MD5)
Previous issue date: 2016
en
dc.description.tableofcontentsCONTENTS
口試委員會審定書........................................................................................i
中文摘要 iii
ABSTRACT iv
CONTENTS vi
圖目錄 ix
表目錄 xii
Chapter 1 緒論 1
1.1 研究背景 1
1.2 生物感測器介紹與發展 4
1.3 文獻回顧 9
1.3.1 電化學技術與應用 9
1.3.2 表面電漿技術與應用 12
1.4 研究動機 13
Chapter 2 基本理論 15
2.1 薄膜光學理論 15
2.1.1 薄膜光學特性 15
2.1.2 多膜理論 21
2.2 表面電漿子共振原理 22
2.2.1 激發表面電漿原理 22
2.2.2 表面電漿共振激發方式 25
2.2.3 漸逝場理論 27
2.2.4 生物樣本量測原理 28
2.3 電化學基本原理 28
2.3.1 拉法第與非拉法第程序 30
2.3.2 電化學反應程序 32
2.3.3 循環伏安法(Cyclic voltammograms) 33
2.4 電化學阻抗頻譜分析原理 34
2.4.1 交流電之電路原理 35
2.4.2 等效電路與阻抗交流頻譜分析 37
Chapter 3 光路設計、機構設計與實驗架設 40
3.1 光路布局 40
3.2 機構設計 42
3.2.1 Kinematic mount 設計 42
3.2.2 機構設計 44
3.2.3 流道設計 46
3.3 實驗與量測 48
3.3.1 實驗架設流程 48
3.3.1.1 晶片介紹 49
3.3.1.2 試劑配置與晶片修飾步驟 50
3.3.1.3 晶片與機構架設 54
3.3.2 光學量測方法 54
3.3.3 電化學量測方法 57
3.3.3.1阻抗分析量測 57
3.3.3.2 循環伏安法量測 58
Chapter 4 實驗結果分析與討論 60
4.1 相位變化測試 60
4.2 Kinematic mount 機構驗證 65
4.3 表面電漿子共振角量測結果 67
4.3.1 各步驟相位量測結果 67
4.3.2 不同食鹽水濃度相位量測 68
4.3.3 食鹽水相位分析與各步驟相位分析 70
4.4 電化學量測結果 74
4.4.1 各步驟電化學阻抗量測結果 74
4.4.2 各步驟電化學循環伏安法量測結果 76
4.5 電化學與表面電漿子共振結果比較 78
Chapter 5 結論與未來展望 81
5.1 結論 81
5.2 未來展望 82
參考文獻 83
dc.language.isozh-TW
dc.subject丙型干擾素zh_TW
dc.subject丙型干擾素zh_TW
dc.subject電化學阻抗量測zh_TW
dc.subject動力學機構設計zh_TW
dc.subject表面電漿子共振zh_TW
dc.subject電化學阻抗量測zh_TW
dc.subject動力學機構設計zh_TW
dc.subject表面電漿子共振zh_TW
dc.subjectcross-calibratingen
dc.subjectElectrochemical Impedance Spectroscopyen
dc.subjectElectrochemical Impedance Spectroscopyen
dc.subjectcross-calibratingen
dc.subjectKinematic Mount Designen
dc.subjectInterferon-γen
dc.subjectKinematic Mount Designen
dc.subjectSurface Plasmon Resonanceen
dc.subjectSurface Plasmon Resonanceen
dc.subjectInterferon-γen
dc.title整合電化學及表面電漿子共振之系統研究:以ATP生物連接子進行丙型干擾素檢測之驗證zh_TW
dc.titleResearch and Development of Electrochemical Impedance Spectroscopy and Surface Plasmon Resonance Interferometer based Integrated System: use ATP-biological linkers to detect IFN-gamma for platform verificationsen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.coadvisor吳光鐘(Kuang-Chong Wu)
dc.contributor.oralexamcommittee李舒昇(Shu-Sheng Lee),何國川(Kuo-Chuan Ho),黃君偉(Jiun-Woei Huang)
dc.subject.keyword表面電漿子共振,電化學阻抗量測,動力學機構設計,丙型干擾素,zh_TW
dc.subject.keywordSurface Plasmon Resonance,Electrochemical Impedance Spectroscopy,Kinematic Mount Design,Interferon-γ,cross-calibrating,en
dc.relation.page85
dc.identifier.doi10.6342/NTU201601529
dc.rights.note有償授權
dc.date.accepted2016-08-05
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
Appears in Collections:應用力學研究所

Files in This Item:
File SizeFormat 
ntu-105-1.pdf
  Restricted Access
4.71 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved