Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50102
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭如忠(Ru-Jong Jeng)
dc.contributor.authorChih-Sheng Luen
dc.contributor.author呂志聖zh_TW
dc.date.accessioned2021-06-15T12:29:46Z-
dc.date.available2019-08-24
dc.date.copyright2016-08-24
dc.date.issued2016
dc.date.submitted2016-08-05
dc.identifier.citation1. A. Marmur, Wetting on Hydrophobic Rough Surfaces:  To Be Heterogeneous or Not To Be? Langmuir 19, 8343-8348 (2003).
2. N. A. Patankar, On the Modeling of Hydrophobic Contact Angles on Rough Surfaces. Langmuir 19, 1249-1253 (2003).
3. N. Takeshita, L. A. Paradis, D. Öner, T. J. McCarthy, W. Chen, Simultaneous Tailoring of Surface Topography and Chemical Structure for Controlled Wettability. Langmuir 20, 8131-8136 (2004).
4. L. Zhai, F. Ç. Cebeci, R. E. Cohen, M. F. Rubner, Stable Superhydrophobic Coatings from Polyelectrolyte Multilayers. Nano Letters 4, 1349-1353 (2004).
5. E. Puukilainen, T. Rasilainen, M. Suvanto, T. A. Pakkanen, Superhydrophobic Polyolefin Surfaces:  Controlled Micro- and Nanostructures. Langmuir 23, 7263-7268 (2007).
6. A. Lafuma, D. Quere, Superhydrophobic states. Nat Mater 2, 457-460 (2003).
7. J. Drelich, E. Chibowski, Superhydrophilic and Superwetting Surfaces: Definition and Mechanisms of Control. Langmuir 26, 18621-18623 (2010).
8. A. Jabbarzadeh, Effect of nano-patterning on oleophobic properties of a surface. Soft Matter 9, 11598-11608 (2013).
9. W.-H. Ting et al., Superhydrophobic waxy-dendron-grafted polymer films viananostructure manipulation. Journal of Materials Chemistry 19, 4819-4828 (2009).
10. W. Barthlott, C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202, 1-8 (1997).
11. J. Lv, Y. Song, L. Jiang, J. Wang, Bio-Inspired Strategies for Anti-Icing. ACS Nano 8, 3152-3169 (2014).
12. Y. Han, Y. Liu, W. Wang, J. Leng, P. Jin, Controlled wettability based on reversible micro-cracking on a shape memory polymer surface. Soft Matter 12, 2708-2714 (2016).
13. C.-M. Chen, S. Yang, Directed Water Shedding on High-Aspect-Ratio Shape Memory Polymer Micropillar Arrays. Advanced Materials 26, 1283-1288 (2014).
14. S.-W. Choi, Y. Zhang, Y.-C. Yeh, A. Lake Wooten, Y. Xia, Biodegradable porous beads and their potential applications in regenerative medicine. Journal of Materials Chemistry 22, 11442-11451 (2012).
15. M. Bokhari, R. J. Carnachan, S. A. Przyborski, N. R. Cameron, Emulsion-templated porous polymers as scaffolds for three dimensional cell culture: effect of synthesis parameters on scaffold formation and homogeneity. Journal of Materials Chemistry 17, 4088-4094 (2007).
16. C. Chang-Hsiao et al., Hydrophilic modification of neural microelectrode arrays based on multi-walled carbon nanotubes. Nanotechnology 21, 485501 (2010).
17. K. Tsougeni, D. Papageorgiou, A. Tserepi, E. Gogolides, 'Smart' polymeric microfluidics fabricated by plasma processing: controlled wetting, capillary filling and hydrophobic valving. Lab on a Chip 10, 462-469 (2010).
18. A. Ranella, M. Barberoglou, S. Bakogianni, C. Fotakis, E. Stratakis, Tuning cell adhesion by controlling the roughness and wettability of 3D micro/nano silicon structures. Acta Biomaterialia 6, 2711-2720 (2010).
19. B. Samuel, H. Zhao, K.-Y. Law, Study of Wetting and Adhesion Interactions between Water and Various Polymer and Superhydrophobic Surfaces. The Journal of Physical Chemistry C 115, 14852-14861 (2011).
20. V. Zorba et al., Biomimetic Artificial Surfaces Quantitatively Reproduce the Water Repellency of a Lotus Leaf. Advanced Materials 20, 4049-4054 (2008).
21. D. P. Dowling, I. S. Miller, M. Ardhaoui, W. M. Gallagher, Effect of Surface Wettability and Topography on the Adhesion of Osteosarcoma Cells on Plasma-modified Polystyrene. Journal of Biomaterials Applications 26, 327-347 (2011).
22. C.-M. Chen, C.-L. Chiang, S. Yang, Programming Tilting Angles in Shape Memory Polymer Janus Pillar Arrays with Unidirectional Wetting against the Tilting Direction. Langmuir 31, 9523-9526 (2015).
23. W. Li et al., Tuning surface micropattern features using a shape memory functional polymer. RSC Advances 3, 9865-9874 (2013).
24. N. García-Huete, J. Cuevas, J. Laza, J. Vilas, L. León, Polymeric Shape-Memory Micro-Patterned Surface for Switching Wettability with Temperature. Polymers 7, 1477 (2015).
25. J. Aitkek, Breath figures. Nature 86, 516-517 (1911).
26. J. Giltay, Breath figures. Nature 86, 585 (1911).
27. G. Widawski, M. Rawiso, B. Francois, Self-organized honeycomb morphology of star-polymer polystyrene films. Nature 369, 387-389 (1994).
28. M. Srinivasarao, D. Collings, A. Philips, S. Patel, Three-Dimensionally Ordered Array of Air Bubbles in a Polymer Film. Science 292, 79-83 (2001).
29. U. H. F. Bunz, Breath Figures as a Dynamic Templating Method for Polymers and Nanomaterials. Advanced Materials 18, 973-989 (2006).
30. M. Hernandez-Guerrero, M. H. Stenzel, Honeycomb structured polymer films via breath figures. Polymer Chemistry 3, 563-577 (2012).
31. P. Escalé, L. Rubatat, L. Billon, M. Save, Recent advances in honeycomb-structured porous polymer films prepared via breath figures. European Polymer Journal 48, 1001-1025 (2012).
32. S. A. Jenekhe, X. L. Chen, Self-Assembly of Ordered Microporous Materials from Rod-Coil Block Copolymers. Science 283, 372-375 (1999).
33. H. Sun, L. Wu, Ordered honeycomb-patterned films via breath figures. Progress in Chemistry 22, 1784-1798 (2010).
34. N. Maruyama et al., Mesoscopic patterns of molecular aggregates on solid substrates. Thin Solid Films 327–329, 854-856 (1998).
35. D. Beysens, Dew nucleation and growth. Comptes Rendus Physique 7, 1082-1100 (2006).
36. K. Wong et al., Water-assisted formation of honeycomb structured porous films. J Porous Mater 13, 213-223 (2006).
37. M. H. Stenzel, C. Barner-Kowollik, T. P. Davis, Formation of honeycomb-structured, porous films via breath figures with different polymer architectures. Journal of Polymer Science Part A: Polymer Chemistry 44, 2363-2375 (2006).
38. L. V. Govor, I. A. Bashmakov, R. Kiebooms, V. Dyakonov, J. Parisi, Self-Organized Networks Based on Conjugated Polymers. Advanced Materials 13, 588-591 (2001).
39. S. D. Angus, T. P. Davis, Polymer Surface Design and Infomatics:  Facile Microscopy/Image Analysis Techniques for Self-Organizing Microporous Polymer Film Characterization. Langmuir 18, 9547-9553 (2002).
40. H. Yabu, M. Tanaka, K. Ijiro, M. Shimomura, Preparation of Honeycomb-Patterned Polyimide Films by Self-Organization. Langmuir 19, 6297-6300 (2003).
41. T. Nishikawa et al., Micropatterns Based on Deformation of a Viscoelastic Honeycomb Mesh. Langmuir 19, 6193-6201 (2003).
42. L. Song et al., Facile Microstructuring of Organic Semiconducting Polymers by the Breath Figure Method: Hexagonally Ordered Bubble Arrays in Rigid Rod-Polymers. Advanced Materials 16, 115-118 (2004).
43. A. Boker et al., Hierarchical nanoparticle assemblies formed by decorating breath figures. Nat Mater 3, 302-306 (2004).
44. W. Madej, A. Budkowski, J. Raczkowska, J. Rysz, Breath Figures in Polymer and Polymer Blend Films Spin-Coated in Dry and Humid Ambience. Langmuir 24, 3517-3524 (2008).
45. M. S. Park, J. K. Kim, Broad-Band Antireflection Coating at Near-Infrared Wavelengths by a Breath Figure. Langmuir 21, 11404-11408 (2005).
46. M. S. Park, W. Joo, J. K. Kim, Porous Structures of Polymer Films Prepared by Spin Coating with Mixed Solvents under Humid Condition. Langmuir 22, 4594-4598 (2006).
47. M. Orlov, I. Tokarev, A. Scholl, A. Doran, S. Minko, pH-Responsive Thin Film Membranes from Poly(2-vinylpyridine):  Water Vapor-Induced Formation of a Microporous Structure. Macromolecules 40, 2086-2091 (2007).
48. A. Muñoz-Bonilla, E. Ibarboure, E. Papon, J. Rodriguez-Hernandez, Engineering polymer surfaces with variable chemistry and topography. Journal of Polymer Science Part A: Polymer Chemistry 47, 2262-2271 (2009).
49. L. Roszol et al., Micropatterned Polyvinyl Butyral Membrane for Acid−Base Diodes. The Journal of Physical Chemistry B 114, 13718-13725 (2010).
50. K.-i. Hiwatari et al., Graft Copolymers Having Hydrophobic Backbone and Hydrophilic Branches XXXIV. Fabrication and Control of Honeycomb Structure Prepared from Amphiphilic Graft Copolymers. Polym J 33, 669-675 (2001).
51. T. Nishikawa et al., Fabrication of Honeycomb Film of an Amphiphilic Copolymer at the Air−Water Interface. Langmuir 18, 5734-5740 (2002).
52. L. A. Connal, P. A. Gurr, G. G. Qiao, D. H. Solomon, From well defined star-microgels to highly ordered honeycomb films. Journal of Materials Chemistry 15, 1286-1292 (2005).
53. F. Farbod, B. Pourabbas, M. Sharif, Direct breath figure formation on PMMA and superhydrophobic surface using in situ perfluoro-modified silica nanoparticles. Journal of Polymer Science Part B: Polymer Physics 51, 441-451 (2013).
54. C. Huang, T. Kamra, S. Chaudhary, X. Shen, Breath Figure Patterns Made Easy. ACS Applied Materials & Interfaces 6, 5971-5976 (2014).
55. A. Muñoz-Bonilla, M. Fernández-García, J. Rodríguez-Hernández, Towards hierarchically ordered functional porous polymeric surfaces prepared by the breath figures approach. Progress in Polymer Science 39, 510-554 (2014).
56. J. Peng, Y. Han, Y. Yang, B. Li, The influencing factors on the macroporous formation in polymer films by water droplet templating. Polymer 45, 447-452 (2004).
57. J. Peng, Y. Han, J. Fu, Y. Yang, B. Li, Formation of Regular Hole Pattern in Polymer Films. Macromolecular Chemistry and Physics 204, 125-130 (2003).
58. E. Bormashenko et al., Self-assembled honeycomb polycarbonate films deposited on polymer piezoelectric substrates and their applications. Polymers for Advanced Technologies 16, 299-304 (2005).
59. B. Zhao, J. Zhang, H. Wu, X. Wang, C. Li, Fabrication of honeycomb ordered polycarbonate films using water droplets as template. Thin Solid Films 515, 3629-3634 (2007).
60. M. H. Stenzel, T. P. Davis, A. G. Fane, Honeycomb structured porous films prepared from carbohydrate based polymers synthesized via the RAFT process. Journal of Materials Chemistry 13, 2090-2097 (2003).
61. L. Ghannam, M. Manguian, J. François, L. Billon, A versatile route to functional biomimetic coatings: Ionomers for honeycomb-like structures. Soft Matter 3, 1492-1499 (2007).
62. L. Billon et al., Tailoring Highly Ordered Honeycomb Films Based on Ionomer Macromolecules by the Bottom-Up Approach. Macromolecules 42, 345-356 (2009).
63. A. E. Saunders et al., Breath figure templated self-assembly of porous diblock copolymer films. Physical Review E 73, 031608 (2006).
64. M. H. Stenzel-Rosenbaum, T. P. Davis, A. G. Fane, V. Chen, Porous Polymer Films and Honeycomb Structures Made by the Self-Organization of Well-Defined Macromolecular Structures Created by Living Radical Polymerization Techniques. Angewandte Chemie International Edition 40, 3428-3432 (2001).
65. J.-Z. Chen et al., Polymethylene-b-polystyrene diblock copolymer: Synthesis, property, and application. Journal of Polymer Science Part A: Polymer Chemistry 48, 1894-1900 (2010).
66. A. S. de León, A. Muñoz-Bonilla, M. Fernández-García, J. Rodríguez-Hernández, Breath figures method to control the topography and the functionality of polymeric surfaces in porous films and microspheres. Journal of Polymer Science Part A: Polymer Chemistry 50, 851-859 (2012).
67. A. S. de León, A. del Campo, M. Fernández-García, J. Rodríguez-Hernández, A. Muñoz-Bonilla, Hierarchically Structured Multifunctional Porous Interfaces through Water Templated Self-Assembly of Ternary Systems. Langmuir 28, 9778-9787 (2012).
68. V. D. Deepak, S. K. Asha, Self-Organization-Induced Three-Dimensional Honeycomb Pattern in Structure-Controlled Bulky Methacrylate Polymers:  Synthesis, Morphology, and Mechanism of Pore Formation. The Journal of Physical Chemistry B 110, 21450-21459 (2006).
69. C. Cheng, Y. Tian, Y. Shi, R. Tang, F. Xi, Ordered Honeycomb-Structured Films from Dendronized PMA-b-PEO Rod-Coil Block Copolymers. Macromolecular Rapid Communications 26, 1266-1272 (2005).
70. C. X. Cheng, Y. Tian, Y. Q. Shi, R. P. Tang, F. Xi, Porous Polymer Films and Honeycomb Structures Based on Amphiphilic Dendronized Block Copolymers. Langmuir 21, 6576-6581 (2005).
71. L. A. Connal, R. Vestberg, C. J. Hawker, G. G. Qiao, Dramatic morphology control in the fabrication of porous polymer films. Adv. Funct. Mater 18, 3706-3714 (2008).
72. F. Gong et al., Biodegradable comb-dendritic tri-block copolymers consisting of poly(ethylene glycol) and poly(l-lactide): Synthesis, characterizations, and regulation of surface morphology and cell responses. Polymer 50, 2775-2785 (2009).
73. S.-J. Hsieh, C.-C. Wang, C.-Y. Chen, Self-Assembling Microporous Matrix from Dendritic−Linear Copolymers Based on a Solvent-Induced Phase Separation Mechanism. Macromolecules 42, 4787-4794 (2009).
74. J. H. Kim, M. Seo, S. Y. Kim, Lithographically Patterned Breath Figure of Photoresponsive Small Molecules: Dual-Patterned Honeycomb Lines from a Combination of Bottom-Up and Top-Down Lithography. Advanced Materials 21, 4130-4133 (2009).
75. P. Lundberg et al., Linear dendritic polymeric amphiphiles with intrinsic biocompatibility: synthesis and characterization to fabrication of micelles and honeycomb membranes. Polymer Chemistry 2, 394-402 (2011).
76. Y. Zhu et al., Honeycomb-Structured Films by Multifunctional Amphiphilic Biodegradable Copolymers: Surface Morphology Control and Biomedical Application as Scaffolds for Cell Growth. ACS Applied Materials & Interfaces 3, 2487-2495 (2011).
77. C.-P. Chen, S. A. Dai, H.-L. Chang, W.-C. Su, R.-J. Jeng, Facile approach to polyurea/malonamide dendrons via a selective ring-opening addition reaction of azetidine-2,4-dione. Journal of Polymer Science Part A: Polymer Chemistry 43, 682-688 (2005).
78. C.-C. Chang et al., Using a breath-figure method to self-organize honeycomb-like polymeric films from dendritic side-chain polymers. Materials Chemistry and Physics 128, 157-165 (2011).
79. 吳建欣, 兩性型規則樹枝狀高分子應用於製備多孔性蜂窩狀聚乳酸高分子膜之研究. 中興大學化學工程學系所學位論文, 1-139 (2012).
80. W. J. Buehler, J. V. Gilfrich, R. C. Wiley, Effect of Low‐Temperature Phase Changes on the Mechanical Properties of Alloys near Composition TiNi. Journal of Applied Physics 34, 1475-1477 (1963).
81. Z. G. Wei, R. Sandstroröm, S. Miyazaki, Shape-memory materials and hybrid composites for smart systems: Part I Shape-memory materials. Journal of Materials Science 33, 3743-3762 (1998).
82. A. Charlesby, Pergamon Press,Oxford, 1960, 198, Atomic Radiation and Polymers. (Pergamon Press, 1960), pp. 556.
83. S. Ota, Current status of irradiated heat-shrinkable tubing in Japan. Radiation Physics and Chemistry (1977) 18, 81-87 (1981).
84. S. Machi, New trends of radiation processing applications. Radiation Physics and Chemistry 47, 333-336 (1996).
85. V. Skákalová, V. Lukeš, M. Breza, Shape memory effect of dehydrochlorinated crosslinked poly (vinyl chloride). Macromolecular Chemistry and Physics 198, 3161-3172 (1997).
86. C. Sivakumar, A. Sultan Nasar, Shape-memory polyurethanes minimally crosslinked with hydroxyl-terminated AB2-type hyperbranched polyurethanes. Journal of Applied Polymer Science 120, 725-734 (2011).
87. Y. Shirai, S. Hayashi, Mitsubishi Tech. Bull. 184, 213 (1988).
88. K. Sakurai, T. Kashiwagi, T. Takahashi, Crystal structure of polynorbornene. Journal of applied polymer science 47, 937-940 (1993).
89. C. Liu, H. Qin, P. T. Mather, Review of progress in shape-memory polymers. Journal of Materials Chemistry 17, 1543-1558 (2007).
90. T. Hirai, H. Maruyama, T. Suzuki, S. Hayashi, Shape memorizing properties of a hydrogel of poly (vinyl alcohol). Journal of applied polymer science 45, 1849-1855 (1992).
91. Y. Osada, J.-P. Gong, Soft and Wet Materials: Polymer Gels. Advanced Materials 10, 827-837 (1998).
92. C. Alvarez-Lorenzo et al., Polymer Gels That Memorize Elements of Molecular Conformation. Macromolecules 33, 8693-8697 (2000).
93. 姚康德, 成國祥, 智慧材料. (五南圖書出版股份有限公司, 2003).
94. F. Li et al., Studies on thermally stimulated shape memory effect of segmented polyurethanes. Journal of Applied Polymer Science 64, 1511-1516 (1997).
95. Q.-Q. Ni, C.-s. Zhang, Y. Fu, G. Dai, T. Kimura, Shape memory effect and mechanical properties of carbon nanotube/shape memory polymer nanocomposites. Composite Structures 81, 176-184 (2007).
96. S. Kelch, S. Steuer, A. M. Schmidt, A. Lendlein, Shape-Memory Polymer Networks from Oligo[(ε-hydroxycaproate)-co-glycolate]dimethacrylates and Butyl Acrylate with Adjustable Hydrolytic Degradation Rate. Biomacromolecules 8, 1018-1027 (2007).
97. A. Lendlein, S. Kelch, Shape‐memory polymers. Angewandte Chemie International Edition 41, 2034-2057 (2002).
98. C. Liu, H. Qin, P. Mather, Review of progress in shape-memory polymers. Journal of Materials Chemistry 17, 1543-1558 (2007).
99. C.-H. Wu et al., Enhanced shape memory performance of polyurethanes via the incorporation of organic or inorganic networks. RSC Advances 5, 16897-16910 (2015).
100. T. W. G. Solomons, Organic Chemistry 6th Edition. 263 (1996).
101. T. T. Thomas, Ketenes. John Wiley & Sons, 38 (1995).
102. 賴郁文, 臺灣大學, (2015).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50102-
dc.description.abstract微米或奈米級尺度的表面微結構對於材料表面的潤濕與親疏水性質表現有很大的影響,很多系統利用微結構的調控來做到控制表面潤濕性質。近年來,科學家透過設計表面微結構而達到”超疏水”或是”超疏油”等等的表面。
許多研究對形狀記憶材料的表面微結構進行控制,改變了表面親疏水性,再透過材料可逆的形狀固定與形狀回復特性,表面還能夠達到不同程度的粗糙度;傳統製造表面微結構的方法大部分都是利用上而下(Top-down)的方式,包括模具成型,熱雕紋或是其他後加工的方式達到,成本較高且步驟繁複。
在此研究中,透過分子工程設計與製程改良,設計出下而上(buttom-up)的方式製造形狀記憶材料表面的微結構。利用實驗室特有的雙親性樹枝狀高分子與具有形狀記憶性質的聚氨酯,輔以改良的direct breath figure方法於聚氨酯表面自組裝(self-assembly)排列成規則蜂窩狀孔洞,製造出表面的微米尺度微結構,同時具有形狀記憶的性質,可以經由拉伸來使孔洞伸長,再藉由升溫使孔洞回復成原來的形狀,不同形狀的孔洞就有不同的表面粗糙度,達到不同的親疏水性。
利用自組裝行為的方法相較於其他後來加工的方式有著(1)較簡化的製程,(2)得到規則孔洞並,同時保有形狀記憶行為的優勢。此外,透過聚氨酯側鏈上的反應性官能基azetidine-2,4-dione,與交聯劑1,6-己二胺進行開環交聯反應來更進一步加強形狀記憶性質與高溫下的機械性質,最後證實形狀拉伸與回復造成表面微結構的變化,可以調控表面的親疏水性。
zh_TW
dc.description.abstractMicro-/nano structure of surface has a significant effect on wetting regimes. There are many different models to deal with surface wettibility through topography. This approach has been used to create superhydrophobic, or superoleophobic surfaces.
Concerning active surface topography, some examples of patterned surfaces from shape memory materials, and the shape recovery of patterned structure has also been demonstrated. However, these surface patterns are made by replica molding, thermal embossing lithography or other dry processes, which cost more and are more complicated.
In this research, by molecule design and process improvement, we designed a “buttom-up” method to pattern the surface of shape memory material. We took advantage of self-assembling of amphiphilic dendrons to pattern the shape memory polyurethane surface by modified direct breath figure(DBF) method, achieving microstructure on surface with shape memory behavior.
Through this methodology, we can (1) simpilify the fabrication process and (2) achieve uniform surface microstructure and good mechenical properties simultaneously. Moreover, by the crosslinking reaction between azetidine-2,4-dione on the side-chain of pokyurethane and 1,6-diaminohexane, the mechanical properties and shape memory characteristics can be enhanced. Consequently, the change of wettibility by microstructure deformation is achieved by heating the material to the switching temperature.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:29:46Z (GMT). No. of bitstreams: 1
ntu-105-R03549026-1.pdf: 8335360 bytes, checksum: 518ff385b19eba3e982ffd5d5ffe8da5 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents目錄
摘要 I
Abstract III
目錄 IV
圖目錄 VI
表目錄 X
一、緒論 1
二、文獻回顧 2
2.1 表面微結構高分子材料 (microstructure polymer surfaces) 之應用 2
2.1.1 Breath Figures方法與機制 2
2.1.2 應用Breath figures法之製膜方式 6
2.2 應用Breath figures法之高分子 9
2.2.1 蜂窩狀高分子設計策略 15
2.2.2 規則樹枝狀高分子應用於製備蜂窩狀孔洞 18
2.2.3 poly(urea/malonamide) dendrons應用於蜂窩狀高分子膜的合成與策略 25
2.3 形狀記憶材料之簡介 34
2.3.1 形狀記憶材料的原理(93) 35
2.3.2 高分子形狀記憶之來源(89) 36
2.3.3 熱感應型(thermo-responsive)形狀記憶高分子 36
2.4 研究動機 41
三、實驗內容 42
3.1 藥品及溶劑 42
3.2 實驗儀器 46
3.3 實驗流程圖 49
3.4 合成步驟 50
3.4.1 合成dendron構築單元 50
3.4.2 C18系列polyurethane/malonamide dendron 之合成 52
3.4.3 含反應性官能基之單體3-(4-(4-(3,3-dimethyl-2,4-dioxoazetidin-1-yl)benzyl)phenyl)-1,1-bis(2-hydroxyethyl)urea (DEA-diol)合成 55
3.4.4 含反應性官能基之聚氨酯(SPU)合成 56
3.5 規則蜂窩狀孔洞高分子膜製備 57
3.6 規則蜂窩狀孔洞聚氨酯薄膜之交聯反應 58
四、結果與討論 59
4.1 Dendron的合成與鑑定 59
4.1.1 反應選擇性單體IDD之合成與鑑定 59
4.1.2 反應選擇性鏈延長劑之合成與鑑定 64
4.1.3 C18系列收斂型poly(urethane/malonamide) dendron 之合成與鑑定 66
4.1.4 側鏈具有可反應官能基之聚氨酯(SPU)合成 78
4.2 控制不同變因對於聚氨酯孔洞排列之影響 78
4.2.1 不同Dendron濃度對於孔洞排列之影響 78
4.2.2 不同代數Dendron及溶劑對於孔洞排列之影響 79
4.2.3 不同硬鏈段比例之聚氨酯及溶劑對於孔洞排列之影響 83
4.3 BFAs聚氨酯薄膜拉伸及形狀記憶行為 85
4.3.1 SPU45、SPU55之機械性質與形狀記憶行為 85
4.3.2 聚胺酯交聯前後之熱性質 91
4.3.3 SPU45交聯前後孔洞之變化 92
4.3.4 SPU45_0.2M之孔洞拉伸與形狀記憶行為 93
五、結論 94
六、參考文獻 95
dc.language.isozh-TW
dc.title利用Breath figure法製作具有形狀記憶行為之聚胺指蜂窩狀孔洞薄膜zh_TW
dc.titleUsing Breath Figure Arrays as Template to Fabricate Microporous Honeycomb-like Polyurethane Films with Shape Memory Effecten
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee劉英麟(Ying-Ling Liu),李榮和(Rong-Ho Lee),陳錦地(Chin-Ti Chen),駱俊良(Chun-Liang Lo)
dc.subject.keywordBreath figure,形狀記憶,聚胺酯,自組裝,交聯,親疏水,zh_TW
dc.subject.keywordbreath figure,shape memory,polyurethane,self-assembling,crosslinking,wettability,en
dc.relation.page102
dc.identifier.doi10.6342/NTU201601952
dc.rights.note有償授權
dc.date.accepted2016-08-05
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
8.14 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved