請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50089完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳世雄(Shih-Hsiung Wu) | |
| dc.contributor.author | Hsin-Che Huang | en |
| dc.contributor.author | 黃信哲 | zh_TW |
| dc.date.accessioned | 2021-06-15T12:29:27Z | - |
| dc.date.available | 2021-08-24 | |
| dc.date.copyright | 2016-08-24 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-05 | |
| dc.identifier.citation | 1. Bassetti, M.; Ginocchio, F.; Mikulska, M., New treatment options against gram-negative organisms. Critical Care 2011, 15, 215.
2. McGann, P.; Snesrud, E.; Maybank, R.; Corey, B.; Ong, A. C.; Clifford, R.; Hinkle, M.; Whitman, T.; Lesho, E.; Schaecher, K. E., Escherichia coli Harboring mcr-1 and blaCTX-M on a Novel IncF Plasmid: First report of mcr-1 in the USA. Antimicrobial Agents and Chemotherapy 2016, 60, 4420-4421. 3. Spellberg, B.; Shlaes, D., Prioritized current unmet needs for antibacterial therapies. Clinical Pharmacology & Therapeutics 2014, 96, 151-153. 4. Murray, P. R., Baron, E. J., Jorgensen, J. H., Landry, M. L., Pfaller, M. A., & Yolken, R. H., Manual of Clinical Microbiology. 8 ed.; American Society for Microbiology: Herdon, 2003. 5. Weber, J. T., Community-associated methicillin-resistant Staphylococcus aureus. Clinical Infectious Diseases 2005, 41 Suppl 4, S269-S272. 6. Millar, B. C.; Prendergast, B. D.; Moore, J. E., Community-associated MRSA (CA-MRSA): an emerging pathogen in infective endocarditis. Journal of Antimicrobial Chemotherapy 2008, 61, 1-7. 7. CDC MRSA Tracking. http://www.cdc.gov/mrsa/tracking/ (accessed Jun 15, 2016) 8. Patridge, E.; Gareiss, P.; Kinch, M. S.; Hoyer, D., An analysis of FDA-approved drugs: natural products and their derivatives. Drug Discovery Today 2016, 21, 204-207. 9. Colegate, S. M. M. R. J., Bioactive Natural Products: Detection, Isolation, and Structural Determination, Second Edition. CRC Press: Boca Raton, Florida, 2007. 10. Shen, B., A New Golden Age of Natural Products Drug Discovery. Cell 2015, 163, 1297-1300. 11. Lonial, S.; Williams, L.; Carrum, G.; Ostrowski, M.; McCarthy, P., Jr., Neosartorya fischeri: an invasive fungal pathogen in an allogeneic bone marrow transplant patient. Bone Marrow Transplantation 1997, 19, 753-755. 12. Girardin, H.; Monod, M.; Latgé, J. P., Molecular characterization of the food-borne fungus Neosartorya fischeri (Malloch and Cain). Applied and Environmental Microbiology 1995, 61, 1378-1383. 13. Eamvijarn, A.; Gomes, N. M.; Dethoup, T.; Buaruang, J.; Manoch, L.; Silva, A.; Pedro, M.; Marini, I.; Roussis, V.; Kijjoa, A., Bioactive meroditerpenes and indole alkaloids from the soil fungus Neosartorya fischeri (KUFC 6344), and the marine-derived fungi Neosartorya laciniosa (KUFC 7896) and Neosartorya tsunodae (KUFC 9213). Tetrahedron 2013, 69, 8583-8591. 14. Zheng, Z.-Z.; Shan, W.-G.; Wang, S.-L.; Ying, Y.-M.; Ma, L.-F.; Zhan, Z.-J., Three New Prenylated Diketopiperazines from Neosartorya fischeri. Helvetica Chimica Acta 2014, 97, 1020-1026. 15. Fujimoto, H.; Ikeda, M.; Yamamoto, K.; Yamazaki, M., Structure of Fischerin, a New Toxic Metabolite from an Ascomycete, Neosartorya fischeri var. fischeri. Journal of Natural Products 1993, 56, 1268-1275. 16. Wong, S. M.; Musza, L. L.; Kydd, G. C.; Kullnig, R.; Gillum, A. M.; Cooper, R., Fiscalins: new substance P inhibitors produced by the fungus Neosartorya fischeri. Taxonomy, fermentation, structures, and biological properties. The Journal of antibiotics 1993, 46, 545-553. 17. Chang, C. M.; Chern, J.; Chen, M. Y.; Huang, K. F.; Chen, C. H.; Yang, Y. L.; Wu, S. H., Avenaciolides: potential MurA-targeted inhibitors against peptidoglycan biosynthesis in methicillin-resistant Staphylococcus aureus (MRSA). Journal of the American Chemical Society 2015, 137, 267-275. 18. Proksa, B.; Uhrín, D.; Liptaj, T.; Šturdíková, M., Neosartorin, an ergochrome biosynthesized by Neosartorya fischeri. Phytochemistry 1998, 48, 1161-1164. 19. Morino, T.; Nishimoto, M.; Itou, N.; Nishikiori, T., NK372135s, novel antifungal agents produced by Neosartoria fischeri. The Journal of antibiotics 1994, 47, 1546-1548. 20. Wakana, D.; Hosoe, T.; Itabashi, T.; Nozawa, K.; Kawai, K.-i.; Okada, K.; de Campos Takaki, G. M.; Yaguchi, T.; Fukushima, K., Isolation of Isoterrein from Neosartorya fischeri. JSM Mycotoxins 2006, 56, 3-6. 21. Othman, M.; Loh, H. S.; Wiart, C.; Khoo, T. J.; Lim, K. H.; Ting, K. N., Optimal methods for evaluating antimicrobial activities from plant extracts. Journal of Microbiological Methods 2011, 84, 161-166. 22. Wiegand, I.; Hilpert, K.; Hancock, R. E., Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature Protocols 2008, 3, 163-175. 23. Kimura, Y.; Hamasaki, T.; Isogai, A.; Nakajima, H., Structure of Aszonapyrone A, a New Metabolite Produced by Aspergillus zonatus. Agricultural and Biological Chemistry 1982, 46, 1963-1965. 24. Kimura, Y.; Hamasaki, T.; Nakajima, H.; Isogai, A., Structure of aszonalenin, a new metabolite of Aspergillus zonatus. Tetrahedron Letters 1982, 23, 225-228. 25. Becker, E. D., High Resolution NMR: Theory and Chemical Applications. 3 ed.; Academic Press: San Diego, 2000; p 140-178. 26. Johnston, C. W.; Skinnider, M. A.; Dejong, C. A.; Rees, P. N.; Chen, G. M.; Walker, C. G.; French, S.; Brown, E. D.; Berdy, J.; Liu, D. Y.; Magarvey, N. A., Assembly and clustering of natural antibiotics guides target identification. Nature Chemical Biology 2016, 12, 233-239. 27. Mukhopadhyay, J.; Das, K.; Ismail, S.; Koppstein, D.; Jang, M.; Hudson, B.; Sarafianos, S.; Tuske, S.; Patel, J.; Jansen, R.; Irschik, H.; Arnold, E.; Ebright, R. H., The RNA polymerase 'switch region' is a target for inhibitors. Cell 2008, 135, 295-307. 28. Beckham, K. S.; Roe, A. J., From screen to target: insights and approaches for the development of anti-virulence compounds. Frontiers in cellular and infection microbiology 2014, 4, 139. 29. Dewick, P. M., The biosynthesis of C5-C25 terpenoid compounds. Natural Product Reports 2002, 19, 181-222. 30. Ignea, C.; Ioannou, E.; Georgantea, P.; Loupassaki, S.; Trikka, F. A.; Kanellis, A. K.; Makris, A. M.; Roussis, V.; Kampranis, S. C., Reconstructing the chemical diversity of labdane-type diterpene biosynthesis in yeast. Metabolic Engineering 2015, 28, 91-103. 31. Peters, R. J., Two rings in them all: the labdane-related diterpenoids. Natural Product Reports 2010, 27, 1521-1530. 32. Wendt, K. U. S., G. E., Isoprenoid biosynthesis: manifold chemistry catalyzed by similar enzymes. Structure 1998, 6, 127-133. 33. Zhang, Q.; Tiefenbacher, K., Terpene cyclization catalysed inside a self-assembled cavity. Nature Chemistry 2015, 7, 197-202. 34. Schäberle, T. F., Biosynthesis of α-pyrones. Beilstein Journal of Organic Chemistry 2016, 12, 571-588. 35. Xie, D.; Shao, Z.; Achkar, J.; Zha, W.; Frost, J. W.; Zhao, H., Microbial synthesis of triacetic acid lactone. Biotechnology and Bioengineering 2006, 93, 727-736. 36. Yalpani, M.; Willecke, K.; Lynen, F., Triacetic acid lactone, a derailment product of fatty acid biosynthesis. European Journal of Biochemistry 1969, 8, 495-502. 37. Capon, R. J.; Skene, C.; Stewart, M.; Ford, J.; O'Hair, R. A.; Williams, L.; Lacey, E.; Gill, J. H.; Heiland, K.; Friedel, T., Aspergillicins A-E: five novel depsipeptides from the marine-derived fungus Aspergillus carneus. Organic & biomolecular chemistry 2003, 1, 1856-1862. 38. Hayashi, A.; Fujioka, S.; Nukina, M.; Kawano, T.; Shimada, A.; Kimura, Y., Fumiquinones A and B, nematicidal quinones produced by Aspergillus fumigatus. Bioscience, biotechnology, and biochemistry 2007, 71, 1697-1702. 39. Li, S.-M., Prenylated indole derivatives from fungi: structure diversity, biological activities, biosynthesis and chemoenzymatic synthesis. Natural Product Reports 2010, 27, 57-78. 40. Xu, W.; Gavia, D. J.; Tang, Y., Biosynthesis of fungal indole alkaloids. Natural Product Reports 2014, 31, 1474-1487. 41. Girardin, H.; Monod, M.; Latge, J. P., Molecular characterization of the food-borne fungus Neosartorya fischeri (Malloch and Cain). Applied and Environmental Microbiology 1995, 61, 1378-83. 42. Breinholt, J. K., A.; Olsen, C. E.; Weinhold, E. G., A Bis-formamidodiphenylbutadiene from the Fungus Hamigera avellanea. Acta Chemica Scandinavica 1996, 50, 643-645. 43. Isaka, M.; Boonkhao, B.; Rachtawee, P.; Auncharoen, P., A xanthocillin-like alkaloid from the insect pathogenic fungus Cordyceps brunnearubra BCC 1395. Journal of Natural Products 2007, 70, 656-658. 44. Zuck, K. M.; Shipley, S.; Newman, D. J., Induced production of N-formyl alkaloids from Aspergillus fumigatus by co-culture with Streptomyces peucetius. Journal of Natural Products 2011, 74, 1653-1657. 45. Liu, J.; Wang, B.; Li, H.; Xie, Y.; Li, Q.; Qin, X.; Zhang, X.; Ju, J., Biosynthesis of the anti-infective marformycins featuring pre-NRPS assembly line N-formylation and O-methylation and post-assembly line C-hydroxylation chemistries. Organic Letters 2015, 17, 1509-1512. 46. Liu, J.; Zhu, X.; Kim, S. J.; Zhang, W., Antimycin-type depsipeptides: discovery, biosynthesis, chemical synthesis, and bioactivities. Natural Product Reports 2016. 47. Peleg, A. Y.; Seifert, H.; Paterson, D. L., Acinetobacter baumannii: emergence of a successful pathogen. Clinical Microbiology Reviews 2008, 21, 538-582. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50089 | - |
| dc.description.abstract | 自抗生素被發現並引進現代醫學以後,在醫療中一直扮演著舉足輕重的角色。然而,抗生素不同於其他的藥物,由於細菌的迅速演化,在長時間的抗生素使用之下,抗藥性致病菌不停的增加,而大大的減少了可以運用的抗生素選項。例如,具有多重抗藥性的抗甲氧西林金黃色葡萄球菌(MRSA)已是常見的院內感染菌株。抗藥性菌株的出現已經成為現代醫學的最大的挑戰之一,因此尋找新一代抗生素以對抗細菌感染已經是一個刻不容緩的課題。由於天然物具備高度的結構複雜性,並且在演化的過程之下產生許多生物活性,故天然物一直以來都是重要的新藥來源。
在本研究中,我們發現一株來自花蓮縣的本土土壤真菌Neosartorya fischeri分泌的二次代謝物具有抑制細菌生長的活性。利用以活性為導向的策略,將真菌培養並以有機溶劑萃取,經過層析方法(粒徑篩析及矽膠開放式管柱層析、高效液相層析儀)純化且分離出純物質,並使用光譜學方法(核磁共振光譜、紅外光吸收光譜、高解析電噴灑游離質譜)鑑定其化學結構。此外,也利用生物實驗測試其生物活性。最後,在本研究中描述二個二萜類(diterpenoid)化合物sartorypyrone A 及 aszonapyrone A、一個吲哚生物鹼(indole alkaloid)acetylaszonalenin、及兩個具有甲醯胺基(N-formyl group)的新生物鹼。其中,二萜類1號化合物sartorypyrone A衍生物具有最好的生物活性,具備抑制格蘭氏陽性菌生長的能力,甚至對於抗甲氧西林金黃色葡萄球菌(MRSA)也具有很好的抑制效果。另外,也兼具有抗癌細胞活性。因此,我們相信其具有用於新藥開發的潛力。 | zh_TW |
| dc.description.abstract | Ever since antibiotics were discovered and introduced into modern medicine, they have played a pivotal role in the improvement of public health. However, unlike other frequently prescribed drugs, antibiotics tend to gradually lose their efficacy due to the evolution of drug-resistant bacteria. The emergence of multi-drug resistance has become one of the major threats to global healthcare; therefore, finding novel antibiotics has become a critical key to fight against bacterial infections. Since natural products are rich in structural diversity and are evolutionarily produced to be drug alike, they remain important sources of potential drug leads.
Here, several secondary metabolites were isolated from an indigenous fungal species, Neosartorya fischeri, collected from soil in Hualien, Taiwan. The fungus was cultured, then its secondary metabolites were extracted and purified with chromatographic techniques (Size-exclusion and silica gel OPC, HPLC) to obtain pure compounds. All chemical structures were elucidated using spectroscopic methods (NMR, FTIR, HR-ESI-MS). Moreover, bioassays were conducted to evaluate their bioactivities. Two diterpenoids sartorypyrone A and aszonapyrone A, one indole alkaloid acetylaszonalenin, and two novel N-formyl alkaloids were reported in this study. Among the compounds being identified thus far, compound 1, sartorypyrone A, showed the best antimicrobial activities against Gram-positive bacteria and even against Methicillin-resistant Staphylococcus aureus (MRSA). In addition, it also showed anticancer activity. Therefore, we believe it can be a potential lead compound for drug development. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T12:29:27Z (GMT). No. of bitstreams: 1 ntu-105-R03b46008-1.pdf: 22747781 bytes, checksum: 850dce8c7aa990b8a801d294cfb401e1 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 誌謝 iii
摘要 iv ABSTRACT v TABLE OF CONTENTS vi LIST OF FIGURES viii LIST OF TABLES x LIST OF ABBREVIATIONS xi 1. INTRODUCTION 1 1-1 Antibiotic Resistance: A Threat to Global Public Health 1 1-2 Methicillin-Resistant Staphylococcus aureus (MRSA) 2 1-3 Natural Products Are Important Sources for Drug Discovery 3 1-4 Neosartorya fischeri 4 1-5 Objective 7 2. MATERIALS AND METHODS 9 2-1 Accessing the Optimal Fermentation Condition for N. fischeri 9 2-2 Extraction 9 2-3 Bioactivity-Guided Purification of Natural Products 10 2-4 Spectroscopic Tools and Analytical Methods 10 2-5 Nuclear Magnetic Resonance (NMR) Analysis 13 2-6 Agar Well-Diffusion Antimicrobial Assay 15 2-7 Determination of Minimum Inhibitory Concentrations 15 2-8 Anticancer Assay 16 3. Results 18 3-1 Optimal Fermentation Condition for N. fischeri 18 3-2 Extraction and Purification 20 3-3 Structure Elucidation of Compound 1 23 3-4 Structure Elucidation of Compound 2 31 3-5 Structure Elucidation of Compound 3 39 3-6 Structure Elucidation of Compound 4 48 3-7 Structure Elucidation of Compound 5 55 3-8 Antimicrobial Activities of Compounds 1–5 64 3-9 1 and 2 Are Potent Inhibitors against MRSA 65 3-10 1 and 2 also Possess Anticancer Activity 66 4. Discussion 68 4-1 1 and 2 are New Potent Antibiotics against MRSA 68 4-2 1 and 2 are Biosynthetically Related 71 4-3 Biosyntheses of 3, 4, and 5 74 4-4 N. fischeri Showed Bioactivity against A. baumannii 75 4-5 Concluding Remarks 77 5. References 78 6. Appendix 82 | |
| dc.language.iso | en | |
| dc.subject | Neosartorya fischeri | zh_TW |
| dc.subject | 天然物 | zh_TW |
| dc.subject | MRSA | zh_TW |
| dc.subject | 二次代謝物 | zh_TW |
| dc.subject | MRSA | zh_TW |
| dc.subject | 二次代謝物 | zh_TW |
| dc.subject | Neosartorya fischeri | zh_TW |
| dc.subject | 抗生素 | zh_TW |
| dc.subject | 天然物 | zh_TW |
| dc.subject | 抗生素 | zh_TW |
| dc.subject | antibiotic | en |
| dc.subject | MRSA | en |
| dc.subject | secondary metabolites | en |
| dc.subject | Neosartorya fischeri | en |
| dc.subject | antibiotic | en |
| dc.subject | natural products | en |
| dc.subject | MRSA | en |
| dc.subject | secondary metabolites | en |
| dc.subject | natural products | en |
| dc.subject | Neosartorya fischeri | en |
| dc.title | 台灣本土真菌 Neosartorya fischeri 之二次代謝物之化學結構及生物活性分析 | zh_TW |
| dc.title | Elucidation of Chemical Structures and Bioactivities of Secondary Metabolites Isolated from Indigenous Fungus Neosartorya fischeri | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 梁博煌(Po-Huang Liang),花國鋒(Kuo-Feng Hua),林曉青(Hsiao-Ching Lin) | |
| dc.subject.keyword | 天然物,抗生素,Neosartorya fischeri,二次代謝物,MRSA, | zh_TW |
| dc.subject.keyword | natural products,antibiotic,Neosartorya fischeri,secondary metabolites,MRSA, | en |
| dc.relation.page | 86 | |
| dc.identifier.doi | 10.6342/NTU201602018 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-08-05 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 22.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
