Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50083
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor趙玲(Ling Chao)
dc.contributor.authorChia-Yee Hongen
dc.contributor.author洪嘉怡zh_TW
dc.date.accessioned2021-06-15T12:29:19Z-
dc.date.available2018-08-31
dc.date.copyright2016-08-31
dc.date.issued2016
dc.date.submitted2016-08-05
dc.identifier.citation1. Bonventre, J. V., Phospholipase A2 and signal transduction. Journal of the American Society of Nephrology 1992, 3, (2), 128-50.
2. Burke, J. E.; Dennis, E. A., Phospholipase A2 structure/function, mechanism, and signaling. Journal of Lipid Research 2009, 50, (Supplement), S237-S242.
3. Berg, O. G.; Gelb, M. H.; Tsai, M.-D.; Jain, M. K., Interfacial Enzymology:  The Secreted Phospholipase A2-Paradigm. Chemical Reviews 2001, 101, (9), 2613-2654.
4. Ogawa, M.; Yamashita, S.; Sakamoto, K.; Ikei, S., Elevation of serum group II phospholipase A2 in patients with cancers of digestive organs. Research communications in chemical pathology and pharmacology 1991, 74, (2), 241-244.
5. J?rgensen, K.; Davidsen, J.; Mouritsen, O. G., Biophysical mechanisms of phospholipase A2 activation and their use in liposome-based drug delivery. FEBS Letters 2002, 531, (1), 23-27.
6. Hansen, A. H.; Mouritsen, O. G.; Arouri, A., Enzymatic action of phospholipase A2 on liposomal drug delivery systems. International Journal of Pharmaceutics 2015, 491, (1–2), 49-57.
7. Grainger, D. W.; Reichert, A.; Ringsdorf, H.; Salesse, C., An enzyme caught in action: Direct imaging of hydrolytic function and domain formation of phospholipase A2 in phosphatidylcholine monolayers. FEBS Letters 1989, 252, (1–2), 73-82.
8. Grainger, D. W.; Reichert, A.; Ringsdorf, H.; Salesse, C., Hydrolytic action of phospholipase A2 in monolayers in the phase transition region: direct observation of enzyme domain formation using fluorescence microscopy. Biochimica et Biophysica Acta (BBA) - Biomembranes 1990, 1023, (3), 365-379.
9. Maloney, K. M.; Grandbois, M.; Grainger, D. W.; Salesse, C.; Lewis, K. A.; Roberts, M. F., Phospholipase A2 domain formation in hydrolyzed asymmetric phospholipid monolayers at the air/water interface. Biochimica et Biophysica Acta (BBA) - Biomembranes 1995, 1235, (2), 395-405.
10. Gudmand, M.; Rocha, S.; Hatzakis, N. S.; Peneva, K.; Müllen, K.; Stamou, D.; Uji-I, H.; Hofkens, J.; Bj?rnholm, T.; Heimburg, T., Influence of Lipid Heterogeneity and Phase Behavior on Phospholipase A2 Action at the Single Molecule Level. Biophysical Journal 98, (9), 1873-1882.
11. Rocha, S.; De Keersmaecker, H.; Hutchison, J. A.; Vanhoorelbeke, K.; Martens, J. A.; Hofkens, J.; Uji-i, H., Membrane Remodeling Processes Induced by Phospholipase Action. Langmuir 2014, 30, (16), 4743-4751.
12. Zhdanov, V. P.; Höök, F., Kinetics of the enzyme–vesicle interaction including the formation of rafts and membrane strain. Biophysical Chemistry 2012, 170, 17-24.
13. Vladimir, P. Z.; Fredrik, H., Kinetics of enzymatic reactions in lipid membranes containing domains. Physical Biology 2015, 12, (2), 026003.
14. Leidy, C.; Ocampo, J.; Duelund, L.; Mouritsen, Ole G.; J?rgensen, K.; Peters, Günther H., Membrane Restructuring by Phospholipase A(2) Is Regulated by the Presence of Lipid Domains. Biophysical Journal 2011, 101, (1), 90-99.
15. Hurt-Camejo, E.; Camejo, G.; Peilot, H.; Öörni, K.; Kovanen, P., Phospholipase A2 in Vascular Disease. Circulation Research 2001, 89, (4), 298-304.
16. Hurt-Camejo, E.; Camejo, G., Potential involvement of type II phospholipase A2 in atherosclerosis. Atherosclerosis 1997, 132, (1), 1-8.
17. Menschikowski, M.; Lattke, P.; Bergmann, S.; Jaross, W., Exposure of macrophages to PLA2-modified lipoproteins leads to cellular lipid accumulations. Analytical cellular pathology : the journal of the European Society for Analytical Cellular Pathology 1995, 9, (2), 113-121.
18. Maloney, K.; Grandbois, M.; Salesse, C.; Grainger, D. W.; Reichert, A., Membrane microstructural templates for enzyme domain formation. Journal of Molecular Recognition 1996, 9, (5‐6), 368-374.
19. Maloney, K. M.; Grainger, D. W., Phase separated anionic domains in ternary mixed lipid monolayers at the air-water interface. Chemistry and Physics of Lipids 1993, 65, (1), 31-42.
20. Reichert, A.; Ringsdorf, H.; Wagenknecht, A., Spontaneous domain formation of phospholipase A 2 at interfaces: fluorescence microscopy of the interaction of phospholipase A 2 with mixed monolayers of lecithin, lysolecithin and fatty acid. Biochimica et Biophysica Acta (BBA)-Biomembranes 1992, 1106, (1), 178-188.
21. Balashev, K.; Atanasov, V.; Mitewa, M.; Petrova, S.; Bj?rnholm, T., Kinetics of degradation of dipalmitoylphosphatidylcholine (DPPC) bilayers as a result of vipoxin phospholipase A2 activity: An atomic force microscopy (AFM) approach. Biochimica et Biophysica Acta (BBA) - Biomembranes 2011, 1808, (1), 191-198.
22. Grandbois, M.; Clausen-Schaumann, H.; Gaub, H., Atomic Force Microscope Imaging of Phospholipid Bilayer Degradation by Phospholipase A2. Biophysical Journal 1998, 74, (5), 2398-2404.
23. Nielsen, L. K.; Risbo, J.; Callisen, T. H.; Bj?rnholm, T., Lag-burst kinetics in phospholipase A2 hydrolysis of DPPC bilayers visualized by atomic force microscopy. Biochimica et Biophysica Acta (BBA) - Biomembranes 1999, 1420, (1–2), 266-271.
24. Jurak, M.; Chibowski, E., Influence of (phospho)lipases on properties of mica supported phospholipid layers. Applied Surface Science 2010, 256, (21), 6304-6312.
25. Han, C.-T.; Chao, L., Creating Air-Stable Supported Lipid Bilayers by Physical Confinement Induced by Phospholipase A2. ACS Applied Materials & Interfaces 2014, 6, (9), 6378-6383.
26. Wacklin, H. P.; Tiberg, F.; Fragneto, G.; Thomas, R. K., Distribution of reaction products in phospholipase A2 hydrolysis. Biochimica et Biophysica Acta (BBA) - Biomembranes 2007, 1768, (5), 1036-1049.
27. Maherani, B.; Arab-tehrany, E.; Kheirolomoom, A.; Reshetov, V.; Stebe, M. J.; Linder, M., Optimization and characterization of liposome formulation by mixture design. Analyst 2012, 137, (3), 773-786.
28. Stottrup, B. L.; Veatch, S. L.; Keller, S. L., Nonequilibrium behavior in supported lipid membranes containing cholesterol. Biophysical journal 2004, 86, (5), 2942-2950.
29. Crane, J. M.; Tamm, L. K., Fluorescence microscopy to study domains in supported lipid bilayers. Methods in Membrane Lipids 2007, 481-488.
30. Chao, L.; Gast, A. P.; Hatton, T. A.; Jensen, K. F., Sphingomyelinase-induced phase transformations: causing morphology switches and multiple-time-domain ceramide generation in model raft membranes. Langmuir 2009, 26, (1), 344-356.
31. Veatch, S. L.; Soubias, O.; Keller, S. L.; Gawrisch, K., Critical fluctuations in domain-forming lipid mixtures. Proceedings of the National Academy of Sciences 2007, 104, (45), 17650-17655.
32. Lynch, M. L.; Wireko, F.; Tarek, M.; Klein, M., Intermolecular interactions and the structure of fatty acid-soap crystals. The Journal of Physical Chemistry B 2001, 105, (2), 552-561.
33. Pascher, I.; Sundell, S.; Hauser, H., Polar group interaction and molecular packing of membrane lipids: The crystal structure of lysophosphatidylethanolamine. Journal of molecular biology 1981, 153, (3), 807-824.
34. Hauser, H.; Pascher, I.; Sundell, S., Conformation of phospholipids: crystal structure of a lysophosphatidylcholine analogue. Journal of molecular biology 1980, 137, (3), 249-264.
35. Maloney, K. M.; Grandbois, M.; Grainger, D. W.; Salesse, C.; Lewis, K. A.; Roberts, M. F., Phospholipase A 2 domain formation in hydrolyzed asymmetric phospholipid monolayers at the air/water interface. Biochimica et Biophysica Acta (BBA)-Biomembranes 1995, 1235, (2), 395-405.
36. Singh, J.; Lai, A. J.; Alaee, Y.; Ranganathan, R., Partitioning of lysolipids, fatty acids and their mixtures in aqueous lipid bilayers: Solute concentration/composition effects. Biochimica et Biophysica Acta (BBA)-Biomembranes 2014, 1838, (1), 348-354.
37. Leidy, C.; Ocampo, J.; Duelund, L.; Mouritsen, O. G.; J?rgensen, K.; Peters, G. H., Membrane restructuring by phospholipase A 2 is regulated by the presence of lipid domains. Biophysical journal 2011, 101, (1), 90-99.
38. Leidy, C.; Mouritsen, O. G.; J?rgensen, K.; Peters, G. H., Evolution of a rippled membrane during phospholipase A 2 hydrolysis studied by time-resolved AFM. Biophysical journal 2004, 87, (1), 408-418.
39. Ahmed, T.; Kelly, S. M.; Lawrence, A.; Mezna, M.; Price, N. C., Conformational changes associated with activation of bee venom phospholipase A2. Journal of biochemistry 1996, 120, (6), 1224-1231.
40. Tomasselli, A.; Hui, J.; Fisher, J.; Zürcher-Neely, H.; Reardon, I.; Oriaku, E.; Kezdy, F.; Heinrikson, R., Dimerization and activation of porcine pancreatic phospholipase A2 via substrate level acylation of lysine 56. Journal of Biological Chemistry 1989, 264, (17), 10041-10047.
41. Ramirez, F.; Jain, M. K., Phospholipase A2 at the bilayer interface. Proteins: Structure, Function, and Bioinformatics 1991, 9, (4), 229-239.
42. Ghomashchi, F.; Yu, B. Z.; Berg, O.; Jain, M. K.; Gelb, M. H., Interfacial catalysis by phospholipase A2: substrate specificity in vesicles. Biochemistry 1991, 30, (29), 7318-7329.
43. Sivasankar, S.; Subramaniam, S.; Leckband, D., Direct molecular level measurements of the electrostatic properties of a protein surface. Proceedings of the National Academy of Sciences 1998, 95, (22), 12961-12966.
44. Latour, R. A., Biomaterials: protein-surface interactions. Encyclopedia of biomaterials and biomedical engineering 2005, 28, 1-15.
45. Raffaini, G.; Ganazzoli, F., Protein Adsorption on a Hydrophobic Surface: A Molecular Dynamics Study of Lysozyme on Graphite. Langmuir 2010, 26, (8), 5679-5689.
46. Patel, A. J.; Varilly, P.; Jamadagni, S. N.; Hagan, M. F.; Chandler, D.; Garde, S., Sitting at the Edge: How Biomolecules use Hydrophobicity to Tune Their Interactions and Function. The Journal of Physical Chemistry B 2012, 116, (8), 2498-2503.
47. Welti, R.; Glaser, M., Lipid domains in model and biological membranes. Chemistry and physics of lipids 1994, 73, (1), 121-137.
48. Haverstick, D. M.; Glaser, M., Visualization of domain formation in the inner and outer leaflets of a phospholipid bilayer. The Journal of cell biology 1988, 106, (6), 1885-1892.
49. Sartipy, P.; Johansen, B.; Gasvik, K.; Hurt-Camejo, E., Molecular basis for the association of group IIA phospholipase A(2) and decorin in human atherosclerotic lesions. Circ Res 2000, 86, (6), 707-14.
50. Hakala, J. K.; Oorni, K.; Pentikainen, M. O.; Hurt-Camejo, E.; Kovanen, P. T., Lipolysis of LDL by human secretory phospholipase A(2) induces particle fusion and enhances the retention of LDL to human aortic proteoglycans. Arterioscler Thromb Vasc Biol 2001, 21, (6), 1053-8.
51. Beeley, J. G., Glycoprotein and Proteoglycan Techniques. Elsevier Science: 2000.
52. Hayward, J. A.; Chapman, D., Biomembrane surfaces as models for polymer design: the potential for haemocompatibility. Biomaterials 1984, 5, (3), 135-142.
53. Schlenoff, J. B., Zwitteration: Coating Surfaces with Zwitterionic Functionality to Reduce Nonspecific Adsorption. Langmuir 2014, 30, (32), 9625-9636.
54. Lee, I.-C.; Liu, Y.-C.; Tsai, H.-A.; Shen, C.-N.; Chang, Y.-C., Promoting the selection and maintenance of fetal liver stem/progenitor cell colonies by layer-by-layer polypeptide tethered supported lipid bilayer. ACS applied materials & interfaces 2014, 6, (23), 20654-20663.
55. Karakas, M.; Koenig, W., Lp-PLA2 Inhibition—The Atherosclerosis Panaceas Pharmaceuticals 2010, 3, (5), 1360-1373.
56. Rosenson, R. S.; Hurt-Camejo, E., Phospholipase A2 enzymes and the risk of atherosclerosis. Eur Heart J 2012, 33, (23), 2899-909.
57. Castellana, E. T.; Cremer, P. S., Solid supported lipid bilayers: From biophysical studies to sensor design. Surface Science Reports 2006, 61, 429-444.
58. Axelrod, D.; Koppel, D. E.; Schlessinger, J.; Elson, E.; Webb, W. W., Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophysical Journal 1976, 16, (9), 1055-1069.
59. Ratto, T. V.; Longo, M. L., Obstructed Diffusion in Phase-Separated Supported Lipid Bilayers: A Combined Atomic Force Microscopy and Fluorescence Recovery after Photobleaching Approach. Biophysical Journal 2002, 83, (6), 3380-3392.
60. Kang, M.; Day, C. A.; Drake, K.; Kenworthy, A. K.; DiBenedetto, E., A generalization of theory for two-dimensional fluorescence recovery after photobleaching applicable to confocal laser scanning microscopes. Biophysical Journal 2009, 97, (5), 1501-1511.
61. M. Thanbichler, Synchronization of chromosome dynamics and cell division in bacteria. Cold Spring Harbor perspectives in biology 2010, 2, a000331.
62. Y. L. Shih, M. Zheng, Spatial control of the cell division site by the Min system in Escherichia coli. Environmental microbiology 2013, 15, (12), 3229-3239.
63. M. Loose, E. Fischer-Friedrich, J. Ries, K. Kruse, P. Schwille, Spatial regulators for bacterial cell division self-organize into surface waves in vitro. Science 2008, 320, (5877), 789-792.
64. M. Loose, E. Fischer-Friedrich, C. Herold, K. Kruse, P. Schwille, Min protein patterns emerge from rapid rebinding and membrane interaction of MinE. Nature structural & molecular biology 2011, 18, (5), 577-583.
65. M. Loose, K. Kruse, P. Schwille, Protein self-organization: lessons from the min system. Annual review of biophysics 2011, 40, 315-336.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50083-
dc.description.abstract支撐式脂質雙層膜 (Supported Lipid Bilayer, SLBs) 為一種常用於生物技術的仿生膜,適用於研究脂質膜和生物分子之間的相互作用與物理特性。脂質雙層膜與基材之間水層,使脂質雙層膜保留了二維流動性的特性,能讓嵌入膜的生物分子之性質與結構都不會受到破壞。在本論文中,我們使用此平台來研究磷脂酶(PLA2) 和Min蛋白在脂質膜上的反應機制。
磷脂酶是種膜週邊蛋白,能水解甘油磷脂在sn-2的位置,並從中釋放出溶血磷酸膽鹼和脂肪酸。目前文獻發現磷脂酶在各種細胞程序中扮演重要的角色,並認為它有潛力被用於藥物輸送,能將藥物有效的釋放到目標區域。我們觀察到磷脂酶的水解反應可誘導脂質膜界面,形成具有沾黏性之生物分子模板,且其形成和脂質膜的流動性有關。我們製備了不同莫爾比例的二棕榈酰磷脂酰胆碱/二油酰磷脂酰胆碱 (DPPC/DOPC) 脂質膜以調控膜的反應與流動性。我們觀察到經磷脂酶誘導形成的沾黏性生物分子模板,只有在特定比例下的之二棕榈酰磷脂酰胆碱/二油酰磷脂酰胆碱 (DPPC/DOPC) 脂質膜中,才有顯著地生成,在純二棕榈酰磷脂酰胆碱 (DPPC) 與純二油酰磷脂酰胆碱 (DOPC) 脂質膜中生成的量卻很少,也因此不容易在以前的研究中被觀察到。標記螢光分子的磷脂酶實驗結果證明了沾黏性生物分子模板確實是由磷脂酶誘導形成的。此外,原子力顯微鏡 (Atomic Force Microscope, AFM) 結果表明生物分子模板具有階梯狀結構,有可能是磷脂酶的水解產物在脂質膜上堆積排列而成。其堆積結構會造成脂質的疏水端會暴露於外部水溶液環境中,導致磷脂酶和其他類型的蛋白質,如蛋白聚糖 (Proteoglycan) 與鏈霉親和素 (Streptavidin),會沾黏到這些疏水段區域來保護疏水端。這些實驗結果表明,磷脂酶能誘導原屬於兩性離子界面的脂質膜變成一種具有非專一沾黏性之生物分子模板,因而造成其它生物分子的沾黏。
Min蛋白經研究發現能在大腸桿菌細的兩極來回動態振盪,調控細胞分裂的位置。然而,Min蛋白與脂質膜之間是如何交互作用依然未知。為了進一步觀察磷脂酶是如何影響脂質膜,我們製備了有標記螢光分子的二油酰磷脂酰胆碱/二油酰磷脂酰甘油钠盐 (DOPC/ DOPG) 脂質膜以模仿大腸桿菌之細胞膜,以研究Min蛋白和脂質膜間的交互作用。我們推測Min蛋白的振盪可以改變脂質膜中的密度差,因此影響其它嵌入膜中生物分子的動態行為。當標記螢光MinD, 標記螢光MinE, 三磷酸腺苷(Adenosine Triphosphate, ATP)與三磷酸腺苷再生系統 (ATP regenerating system),被加入脂質膜後,我們能觀察到膜中之鏈霉親和素-生物素-磷脂質复合物 (Streptavidin-biotinylated-DHPE) 會在二油酰磷脂酰胆碱/二油酰磷脂酰甘油钠盐 (DOPC/DOPG) 脂質膜上會產生具有波紋運動型態之濃度分佈。根據膜中之鏈霉親和素-生物素-磷脂質复合物 (Streptavidin-biotinylated-DHPE) 以及MinD 和MinE 濃度分佈的結果,膜中之鏈霉親和素-生物素-磷脂質复合物(Streptavidin-biotinylated-DHPE) 分子並不是直接與MinD與MinE反應,波紋運動的形成很有可能是由Min蛋白在進行振盪時的吸附與解離機制造成的。目前的結果顯示,Min蛋白可能藉由一個類似線性蠕動泵的輸送機制來誘導嵌入脂質膜上的生物分子沿著Min蛋白的移動方向輸送。
zh_TW
dc.description.abstractSupported lipid bilayers (SLBs) have been developed to provide a well-controlled in vitro platform for studying the biophysical properties and interactions between lipid membranes and biomolecules. The bilayer structure allows the embedded membrane species to maintain their native orientation, and the two dimensional fluidity is a crucial factor for bio-molecular interactions to occur. In this report, we are using SLBs platform to study the properties and mechanism of phospholipase A2 (PLA2) and Min proteins.
Phospholipase A2 (PLA2) is a peripheral membrane protein that can hydrolyze phospholipids to produce lysolipids and fatty acids. It has been found to play crucial roles in various cellular processes and thought as a potential candidate for triggering drug release from liposomes for medical treatment. Here, we directly observed that PLA2 hydrolysis reaction can induce the formation of PLA2-binding domains at lipid bilayer interface and found that the formation was significantly influenced by the fluidity of the lipid bilayer. We prepared supported lipid bilayers (SLBs) with various molar ratios of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) to adjust the reactivity and fluidity of the lipid bilayers. A significant amount of the PLA2-induced domains was observed in mixtures of DPPC and DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) but not in either pure DPPC or pure DOPC bilayer, which might be the reason that previous studies rarely observed these domains in lipid bilayer systems. The fluorescently labeled PLA2 experiment showed that newly formed domains acted as binding templates for PLA2. The AFM result showed that the induced domain has stepwise plateau structure, suggesting that PLA2 hydrolysis products may align as bilayers and accumulate layer by layer on the support and the hydrophobic acyl chains at the side of the layer structure may be exposed to the outside aqueous environment. The introduced hydrophobic region could have hydrophobic interactions with proteins and therefore can attract the binding of not only PLA2 but also other types of proteins such as proteoglycans and streptavidin. The results suggest that the formation of PLA2-induced domains may convert part of a zwitterionic nonsticky lipid membrane to a site where biomolecules can nonspecifically bind.
Min proteins have been shown to dynamically oscillate in E.coli and play important roles in regulating the cell division. However, it is still unclear how Min proteins interact with the lipid membrane. To investigate how the Min proteins influence the lipid membrane, we used fluorescently-labeled DOPC/DOPG supported lipid bilayers (SLBs) to mimic the biological behaviors of the E.coli membrane for studying the Min protein-lipid membrane interaction. We hypothesized that the oscillations of Min proteins could play a crucial role in changing lipid membrane spatial density and therefore influence the dynamics of the other membrane embedded species. We observed that fluorescently Streptavidin-biotinylated-DHPE in the DOPC/DOPG SLBs form traveling waves after the addition of labeled MinD, labeled MinE, ATP and ATP regenerating system (phosphoenolpyruvate and pyruvate kinase). The intensity profile suggests that Streptavidin-biotinylated-DHPE molecules are not directly bound to MinD and MinE proteins, and the wave formation might be due to the transient steric effect caused by the binding and unbinding dynamics of Min proteins. In addition, Min proteins seem to induce the membrane species embedded in the lipid membrane transporting along the Min protein wave moving direction, which is similar to the transport mechanism of a linear peristaltic pump.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:29:19Z (GMT). No. of bitstreams: 1
ntu-105-R03524093-1.pdf: 5009080 bytes, checksum: 5587fc67ce6b9c3f32dc1a940280e2b1 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審定書 0
Acknowledgement i
摘要 iii
Abstract v
Table of Content viii
Table Captions x
Figure Captions x
1. Introduction 1
1.1. Supported Lipid Bilayers 1
1.2. Phospholipases A2 2
1.3. Min Protein 4
1.3.1. Min Protein Oscillation Cycle in vivo 4
1.3.2. Min Protein Self-Organizing Surface Waves in vitro 7
2. Materials and Methods 10
2.1. Materials 10
2.2. Apparatus 13
2.2.1. Apparatus for Supported Lipid Bilayer 13
2.2.2. Apparatus for Min Protein Over-expression 14
2.2.3. Apparatus for Min Protein Purification 14
2.3. Lipid Preparation 15
2.4. Preparation of SLBs on a Glass Coverslip 16
2.5. Polydimethylsiloxane (PDMS) Chamber Preparation 17
2.6. PLA2 Experiment 17
2.6.1. Membrane Morphology Evolution after PLA2 addition 17
2.6.2. Conjugation of PLA2 with Alexa Fluor 488 to observe the Binding Phenomenon of PLA2 18
2.6.3. Streptavidin and Proteoglycan binding on the PLA2-induced-domains 18
2.6.4. Images obtained using Fluorescence Microscopy 19
2.6.5. AFM Imaging 20
2.6.6. Lipid membrane diffusion coefficients obtained by Fluorescence Recovery After Photobleaching (FRAP) 20
2.7. Min Protein Experiment 23
2.7.1. Overexpression and Purification of MinD 23
2.7.2. Overexpression and Purification of MinE 26
2.7.3. ATPase assay 27
2.7.4. Observation of Membrane Species Waves 28
2.7.5. Image Analysis by Image J 28
3. Results 29
3.1. PLA2 Experiment 29
3.1.1. PLA2-induced domain formation is influenced by membrane fluidity 29
3.1.2. PLA2-induced domains as binding templates for PLA2 revealed using fluorescently labeled PLA2 34
3.1.3. Fluorescence images of the experiment with labeled PLA2 and the membrane labeled with Texas Red DHPE 38
3.1.4. PLA2-induced domain topography by Atomic Force Microscopy (AFM) 39
3.1.5. PLA2 binding to the domains can be washed off 40
3.2. Min Protein Experiment 42
3.2.1. Reaction of the DOPC/DOPG Supported Lipid Bilayer containing Streptavidin-biotinylated-DHPE (Alexa 488) after the addition of MinD, MinE, ATP and Regenerating System 42
3.2.2. Stopped Traveling Waves of Membrane Species and Min Proteins45
4. Discussions 48
4.1. PLA2 Experiment 48
4.1.1. Proposed mechanism for the formation of the PLA2-induced 3-D layer structure domains 48
4.1.2. Binding of the proteoglycan and streptavidin to PLA2-induced domains 54
4.1.3. Possible role of PLA2-induced domains in physiological studies 57
4.2. Min Protein Experiment 59
4.2.1. Proposed mechanism of How Min proteins Oscillations can Cause the Transportation of Membrane Species 59
5. Conclusions 64
6. References 66
dc.language.isoen
dc.subject濃度分佈zh_TW
dc.subject脂質雙層膜zh_TW
dc.subject磷脂?A2zh_TW
dc.subject非專一沾黏性zh_TW
dc.subject生物分子模板zh_TW
dc.subjectMin蛋白zh_TW
dc.subject自組裝zh_TW
dc.subject濃度分佈zh_TW
dc.subject脂質雙層膜zh_TW
dc.subject磷脂?A2zh_TW
dc.subject非專一沾黏性zh_TW
dc.subject生物分子模板zh_TW
dc.subjectMin蛋白zh_TW
dc.subject自組裝zh_TW
dc.subjectnon-specific binding siteen
dc.subjectphospholipase A2en
dc.subjecttemplate domainen
dc.subjectconcentration profileen
dc.subjectself-organizationen
dc.subjectMin proteinsen
dc.subjectSupported lipid bilayersen
dc.title利用支撐式脂質雙層膜平台來研究磷脂酶與Min蛋白和脂質膜間之交互作用zh_TW
dc.titleUsing Supported Lipid Bilayers to Study the Interactions of Phospholipase A2 and Min Proteins with Lipid Membranesen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee游佳欣(Jiashing Yu),史有伶(Yu-Ling Shih)
dc.subject.keyword脂質雙層膜,磷脂?A2,非專一沾黏性,生物分子模板,Min蛋白,自組裝,濃度分佈,zh_TW
dc.subject.keywordSupported lipid bilayers,phospholipase A2,non-specific binding site,template domain,Min proteins,self-organization,concentration profile,en
dc.relation.page75
dc.identifier.doi10.6342/NTU201601969
dc.rights.note有償授權
dc.date.accepted2016-08-07
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
Appears in Collections:化學工程學系

Files in This Item:
File SizeFormat 
ntu-105-1.pdf
  Restricted Access
4.89 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved