Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50082
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor趙坤茂(Kun-Mao Chao)
dc.contributor.authorWei-Cheng Linen
dc.contributor.author林蔚城zh_TW
dc.date.accessioned2021-06-15T12:29:17Z-
dc.date.available2017-08-24
dc.date.copyright2016-08-24
dc.date.issued2016
dc.date.submitted2016-08-05
dc.identifier.citation[1] D. J. Abraham, R. W. Irving, T. Kavitha, and K. Mehlhorn. Popular matchings. SIAM Journal on Computing, 37(4):1030–1045, 2007.
[2] S. Arora. Polynomial time approximation schemes for euclidean tsp and other geometric problems. In Foundations of Computer Science, 1996. Proceedings., 37th Annual Symposium on, pages 2–11. IEEE, 1996.
[3] S. Arora. Polynomial time approximation schemes for euclidean traveling salesman and other geometric problems. Journal of the ACM (JACM), 45(5):753–782, 1998.
[4] H.-J. Bandelt. Networks with condorcet solutions. European Journal of Operational Research, 20(3):314–326, 1985.
[5] A. Bauer, W. Domschke, and E. Pesch. Competitive location on a network. European Journal of Operational Research, 66(3):372–391, 1993.
[6] M. Bern and P. Plassmann. The steiner problem with edge lengths 1 and 2. Information Processing Letters, 32(4):171–176, 1989.
[7] P. Biró, R. W. Irving, and D. F. Manlove. Popular matchings in the marriage and roommates problems. In Algorithms and Complexity, pages 97–108. Springer, 2010.
[8] V. Chepoi and F. F. Dragan. Condorcet and median points of simple rectilinear polygons. Location Science, 4(1):21–35, 1996.
[9] A. Darmann. Popular spanning trees. International Journal of Foundations of Computer Science, 24(05):655–677, 2013.
[10] R. Durier. Continuous location theory under majority rule. Mathematics of Operations Research, 14(2):258–274, 1989.
[11] M. Furer and B. Raghavachari. Approximating the minimum-degree steiner tree to within one of optimal. Journal of Algorithms, 17(3):409–423, 1994.
[12] G. Galbiati, F. Maffioli, and A. Morzenti. A short note on the approximability of the maximum leaves spanning tree problem. Information Processing Letters, 52(1):45–49, 1994.
[13] D. Gale and L. S. Shapley. College admissions and the stability of marriage. The American Mathematical Monthly, 69(1):9–15, 1962.
[14] P. Gärdenfors. Match making: assignments based on bilateral preferences. Behavioral Science, 20(3):166–173, 1975.
[15] M. R. Garey and D. S. Johnson. Computers and intractability, volume 29. wh freeman New York, 2002.
[16] N. Garg. A 3-approximation for the minimum tree spanning k vertices. In focs, page 302. IEEE, 1996.
[17] S. L. Hakimi. On locating new facilities in a competitive environment. European Journal of Operational Research, 12(1):29–35, 1983.
[18] M. M. Halldórsson, K. Iwano, N. Katoh, and T. Tokuyama. Finding subsets maximizing minimum structures. 1995.
[19] P. Hansen and M. Labbé. Algorithms for voting and competitive location on a network. Transportation Science, 22(4):278–288, 1988.
[20] P. Hansen and J.-F. Thisse. Outcomes of voting and planning: Condorcet, weber and rawls locations. Journal of Public Economics, 16(1):1–15, 1981.
[21] P. Hansen, J.-F. Thisse, and R. Wendell. Equivalence of solutions to network location problems. Mathematics of Operations Research, 11(4):672–678, 1986.
[22] P. Hansen, J.-F. Thisse, R. E. Wendell, et al. Equilibrium analysis for voting and competitive location problems. 1990.
[23] P. Hansen and M. Zheng. Shortest shortest path trees of a network. Discrete applied mathematics, 65(1):275–284, 1996.
[24] R. Hassin and A. Tamir. On the minimum diameter spanning tree problem. Information processing letters, 53(2):109–111, 1995.
[25] C.-C. Huang and T. Kavitha. Near-popular matchings in the roommates problem. SIAM Journal on Discrete Mathematics, 27(1):43–62, 2013.
[26] C.-C. Huang and T. Kavitha. Popular matchings in the stable marriage problem. Information and Computation, 222:180–194, 2013.
[27] M. Karpinski and A. Zelikovsky. New approximation algorithms for the steiner tree problems. Journal of Combinatorial Optimization, 1(1):47–65, 1997.
[28] T. Kavitha. A size-popularity tradeoff in the stable marriage problem. SIAM Journal on Computing, 43(1):52–71, 2014.
[29] T. Kavitha, M. Nasre, and P. Nimbhorkar. Popularity at minimum cost. Journal of Combinatorial Optimization, 27(3):574–596, 2014.
[30] D. Kress and E. Pesch. Sequential competitive location on networks. European Journal of Operational Research, 217(3):483–499, 2012.
[31] M. Labbe. Outcomes of voting and planning in single facility location problems. European Journal of Operational Research, 20(3):299–313, 1985.
[32] W.-Y. Lin, Y.-W. Wu, H.-L. Wang, and K.-M. Chao. Forming plurality at minimum cost. In WALCOM: Algorithms and Computation, pages 77–88. Springer, 2015.
[33] H.-I. Lu and R. Ravi. The power of local optimization: Approximation algorithms for maximum-leaf spanning tree. In Proceedings of the Annual Allerton Conference on Communication Control and Computing, volume 30, pages 533–533. UNIVERSITY OF ILLINOIS, 1992.
[34] D. F. Manlove and C. T. Sng. Popular matchings in the capacitated house allocation problem. In Algorithms–ESA 2006, pages 492–503. Springer, 2006.
[35] R. M. McCutchen. The least-unpopularity-factor and least-unpopularity-margin criteria for matching problems with one-sided preferences. In LATIN 2008: Theoretical Informatics, pages 593–604. Springer, 2008.
[36] R. D. McKelvey and R. E. Wendell. Voting equilibria in multidimensional choice spaces. Mathematics of operations research, 1(2):144–158, 1976.
[37] J. Mestre. Weighted popular matchings. In Encyclopedia of Algorithms, pages 1023–1024. Springer, 2008.
[38] K. Paluch. Popular and clan-popular b-matchings. Theoretical Computer Science, 544:3–13, 2014.
[39] D. Peleg and E. Reshef. Deterministic polylog approximation for minimum communication spanning trees. Springer, 1998.
[40] J. Plesník. The complexity of designing a network with minimum diameter. Networks, 11(1):77–85, 1981.
[41] C. M. C. Rodrıguez and J. A. M. Pérez. Relaxation of the condorcet and simpson conditions in voting location. European Journal of Operational Research, 145(3):673–683, 2003.
[42] C. M. C. Rodríguez and J. A. M. Pérez. Multiple voting location problems. European Journal of Operational Research, 191(2):437–453, 2008.
[43] P. J. Slater. Maximin facility location. Journal of National Bureau of Standards B, 79:107–115, 1975.
[44] C. T. Sng and D. F. Manlove. Popular matchings in the weighted capacitated house allocation problem. Journal of Discrete Algorithms, 8(2):102–116, 2010.
[45] A. Van Zuylen, F. Schalekamp, and D. P. Williamson. Popular ranking. Discrete Applied Mathematics, 165:312–316, 2014.
[46] R. Wendell and R. McKelvey. New perspectives in competitive location theory. European Journal of Operational Research, 6(2):174–182, 1981.
[47] B. Y. Wu, K.-M. Chao, and C. Y. Tang. Approximation algorithms for some optimum communication spanning tree problems. In ISAAC, volume 98, pages 407–416. Springer, 1998.
[48] Y.-W. Wu, W.-Y. Lin, H.-L. Wang, and K.-M. Chao. Computing plurality points and condorcet points in euclidean space. In Algorithms and Computation, pages 688–698. Springer, 2013.
[49] Y.-W. Wu, W.-Y. Lin, H.-L. Wang, and K.-M. Chao. The generalized popular condensation problem. In Algorithms and Computation, pages 606–617. Springer, 2014.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50082-
dc.description.abstract生成樹問題向來是離散數學與演算法領域中經典的最佳化問題。常應用於現代網路模型及協定之建構,探討如何在最小成本情況下使得各節點之間具連通的功能。而本論文所提出的生成樹,希望從相關傳統問題尋常切入的兩個方向(最小化最大以及最小化總和)外,發展出另一套與投票理論相遇之模型。我們將問題的定義回歸到每個節點自身的需求上。這些需求可能是從自己走到樹中最遠點的距離,也可能是經過樹中每個點的距離總和,或是在樹中與自己相鄰的點數等。我們根據一些初步觀察到的性質,提出在某些情況下有效率的算法,探討如何尋找一棵儘可能滿足大眾偏好的生成樹。zh_TW
dc.description.abstractGiven an undirected connected graph G = (V, E) we consider the prob-lem of finding a spanning tree of G which preferred by the majority. We called it popular spanning trees problem (PST) and Condorcet spanning trees prob-lem (CST). In this thesis we mainly focus on when voter’s preference criteria is eccentricity on trees. On cycles, we show that finding a PST or verifying if a PST exists can be done in O(|V |2) time. On unit distance graph, we show that finding a PST or verifying if a PST exists can be done in O(|E|3) time, and for the special case where the center is unique, the shortest-path tree from it is a popular spanning tree. On general graphs, when absolute 1-center and Plural point coincide, the shortest-path tree from it is a popular spanning tree. Similarly, when absolute 1-center and Condorcet point coincide, the shortest-path tree from it is a Condorcet spanning tree.en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:29:17Z (GMT). No. of bitstreams: 1
ntu-105-R03922092-1.pdf: 915624 bytes, checksum: 17067cbff2379b3183367221bb850275 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 An Overview of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3.1 Optimization of Spanning Trees in Networks Design . . . . . . . 3
1.3.2 Popularity on Matching . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.3 Popularity on Facility Location . . . . . . . . . . . . . . . . . . 6
2 Formulation of problems 9
2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Voting Location Problems . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 The Condorcet Set . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 The Plural Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 The Popular Spanning Trees Problem . . . . . . . . . . . . . . . . . . . 12
3 The Popular Spanning Trees Problem on Cycle 15
3.1 The Unit Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.1 The First Approach: Largest Edge . . . . . . . . . . . . . . . . . 16
3.2.2 The Second Approach: Balanced Center . . . . . . . . . . . . . . 17
3.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 An O(n2) – time Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 21
4 The Popular Spanning Trees Problem on Unit Distance Graphs 23
4.1 The Grid Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 An O(m3)–time Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 26
5 The Popular Spanning Trees Problem on General Graphs 27
5.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Relation to Plural Points . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6 Conclusion 31
6.1 Concluding Remark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.2.1 The Complexity of PST and CST on General Graph . . . . . . . 32
6.2.2 The Existence of PST and CST . . . . . . . . . . . . . . . . . . 32
6.2.3 The Case when Preference Criterion is Based on Total Distance . 33
6.2.4 The Case when Preference Criterion is Based on Betweenness . . 33
Bibliography 35
dc.language.isoen
dc.subject投票理論zh_TW
dc.subject生成樹zh_TW
dc.subjectspanning treesen
dc.subjectvoting theoryen
dc.title大眾化生成樹問題zh_TW
dc.titleOn the Popular Spanning Tree Problemen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee朱安強(An-Chiang Chu),王弘倫(Hung-Lung Wang)
dc.subject.keyword生成樹,投票理論,zh_TW
dc.subject.keywordspanning trees,voting theory,en
dc.relation.page39
dc.identifier.doi10.6342/NTU201601989
dc.rights.note有償授權
dc.date.accepted2016-08-07
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
Appears in Collections:資訊工程學系

Files in This Item:
File SizeFormat 
ntu-105-1.pdf
  Restricted Access
894.16 kBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved