Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50071
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周家蓓(Chia-Pei Chou)
dc.contributor.authorNing Leeen
dc.contributor.author李寧zh_TW
dc.date.accessioned2021-06-15T12:29:03Z-
dc.date.available2016-08-30
dc.date.copyright2016-08-30
dc.date.issued2016
dc.date.submitted2016-08-08
dc.identifier.citationAASHTO, Mechanistic-Empirical Pavement Design Guide (MEPDG), Association of State Highway and Transportation Officials, Washington D. C., 2002.
AASHTO, Pavement Design Guide, Association of State Highway and Transportation Officials, Washington D. C., 1993.
Aguiar-Moya, J. P., Hong, F., and Prozzi, J. A., RAP: Save Today, Pay Later? Transportation Research Board 2011 Annual Meeting, Paper 11-1017, 2011.
Amano, Y., Ito, K., Yoshida, S., Matsuo, K., Hashizume, T., Favrat, D., and Mare´chal, F., Impact analysis of carbon tax on the renewal planning of energy supply system for an office building, Energy, Vol. 35, pp.1040–1046, 2010.
Andreen, B., H. Rocheville, and K. Ksaibati. A Methodology for Cost-Benefit Analysis of Recycled Asphalt Pavement in Various Highway Applications. Presented at 91st Annual Meeting of the Transportation Research Board, Washington, D.C., 2012.
Apeagyei, A. K. and Diefenderfer, S. D., Asphalt Material Design Inputs for Use with the Mechanistic-Empirical Pavement Design Guide in Virginia, FHWA/VCTIR 12-R6, September 2011.
Applied Research Associates, Inc., M-E PDG, Software Ver. 1.100, 2009.
Attia, M. and Abdelrahman, M., Sensitivity of Untreated Reclaimed Asphalt Pavement to Moisture, Density, and Freeze Thaw, Journal of Materials in Civil Engineering, Vol. 22, No. 12, pp, 1260-1269, 2010.
Aurangzeb, Q., I. L. Al-Qadi, I. M. Abuawad, W. J. Pine, and J. S. Trepanier. Achieving Desired Volumetrics and Performance for High-RAP Mixtures. Presented at 91st Annual Meeting of the Transportation Research Board, Washington, D.C., 2012.
Baus, R. L. and Stires N. R., Mechanistic-Empirical Pavement Design Guide Implementation, FHWA/SCDOT Report No. FHWA-SC-10-01, 2010.
Birgisdottir, H., Bhander, G., and Hauschild, M. Z., Life cycle assessment of disposal of residues from municipal solid waste incineration: Recycling of bottom ash in road construction or landfilling in Denmark evaluated in the ROAD-RES model, Waste Management, Vol. 27, No. 8, pp.S75-S84, 2007.
Buch, N., Haider, S. W., Brown J. and Chatti, K., Characterization of Truck Traffic in Michigan for the New Mechanistic Empirical Pavement Design Guide, MDOT Research Report RC-1537, 2009.
Butt, A. A., Toller, S., Birgisson, B., Life cycle assessment for the green procurement of roads: a way forward, Journal of Cleaner Production, vol. 90, pp.163-170, 2015.
California Department of Transportation, Life Cycle Cost Analysis Procedures Manual, November, 2007.
Carvalho, R., Ayres, M., Shirazi, H., Selezneva, O., and Darter M., Impact of Design Features on Pavement Response and Performance in Rehabilitated Flexible and Rigid Pavements, FHWa-HRt-10-066, 2011.
Celauro, C., Corriere, F., Guerrieri, M., Casto, B. L., Environmentally appraising different pavement and construction scenarios: A comparative analysis for a typical local road, Transportation Research Part D, vol. 34, pp.41–51, 2015.
Chan, A., Keoleian, G., and Gabler, E., Evaluation of Life-Cycle Cost Analysis Practice Used by the Michigan Department of Transportation, Journal of Transportation Engineering, Vol. 134m No. 6, 2008.
Chiu,C.-T., Hsu, T.-H., and Yang, W.-F., Life cycle assessment on using recycled materials for rehabilitating asphalt pavements, Resources, Conservation and Recycling, vol. 52, pp.545–556, 2008.
Chowdhury, R., Aqul, D., and Fry, T., A life cycle based environmental impacts assessment of construction materials used in road construction, Resources, Conservation and Recycling, vol. 54, pp.250-255, 2010.
CNS14000,環境管理系列,2002年7月。
Colorado Department of Transportation, Fianl Report CDOT-2006-17, October 2006.
Cooper, S. B., Elseifi, M., Mohammad, L. N., and Hassan, M., Performance and Cost-Effectiveness of Sustainable Technologies in Flexible Pavements Using the Mechanistic-Empirical Pavement Design Guide. Journal of Materials in Civil Engineering, Vol. 24, No. 2, February 1, 2012. 239–247.
Cross, S. A., Chesner, W. H., Justus, H. G., and Kearney, E., Life Cycle Environmental Analysis for the Evaluation of Pavement Rehabilitation Options, TRB 2011 Annual Meeting.
Cuelho, E., Mokwa, R. and Akin, M. 2006. “Preventive Maintenance Treatment of Flexible Pavements: A Synthesis of Highway Practice” Western Transportation Institute College of Engineering Montana State University, Bozeman.
Cui, Q. and X. Zhu. Green Contracting in Highway Construction: State of Practice. In Transportation Research Record: Journal of the Transportation Research Board, No. 2228, Transportation Research Board of the National Academies, Washington, D.C., 2011, pp. 11–18.
Demos, G. P., Life Cycle Cost Analysis and Discount Rate on Pavement for the
Department for Environment, Food & Rural Affairs (DEFRA), 2012 greenhouse gas conversion factors for company reporting, accessed in October, 2013. https://www.gov.uk/government/publications/2012-greenhouse-gas-conversion-factors-for-company-reporting
Eco-indicator 99 Manual for Designers: a damage oriented method for life cycle assessment, Ministry of Housing, Spatial Planning and the Environment, Netherlands, October 2000.
EIA, Oil: Crude and Petroleum Products Explained, Refining Crude Oil. )http://www.eia.gov/energyexplained/index.cfm?page=oil_refining (2013.7.10)
El-Badawy, S., Bayomy, F. and Awed A., Performance of MEPDG Dynamic Modulus Predictive Models for Asphalt Concrete Mixtures: Local Calibration for Idaho, Journal of Materials in Civil Engineering , Vol. 24, No. 11, pp.1412-1421, 2012.
Eurobitume, life cycle inventory: Bitumen, 2011. http://www.bitumenuk.com/images/library/files/lifecycleinventorybitumen14mar2011.pdf (2016.5.9)
Evans, M., Using Life Cycle Cost Analysis in Highway Project Development, Caltrans Division of Maintenance , 2011.
Federal Highway Administration (FHWA), Pavement Recycling Guidelines for State and Local Governments, Publication No. FHWA-SA-98-042, 1997.
Federal Highway Administration, Local Calibration of the MEPDG Using Pavement Management Systems, Final Report, HIF-11-026, 2010.
Feng, C.-M., and Wang, S.-M., Integrated Cost-Benefit Analysis with Environmental Factors for a Transportation Project: Case of Pinglin Interchange in Taiwan, Journal of Urban Planning and Development, Vol. 133, No. 3, September 1, 2007.
FHWA, Life-Cycle Cost Analysis: The Georgia Experience, Transportation Asset Management Case Studies. Accessed Dec., 2011a. http://wwwcf.fhwa.dot.gov/asset/if07009/index.cfm.
Gabel, K., Forsberg, P., and Tillman, A., The design and building of a life cycle-based process model for simulating environmental performance, product performance and cost in cement manufacturing, Journal of Cleaner Production, 2004, pp. 77-93, 2004.
Gluch, P. and Baumann, H., The life cycle costing (LCC) approach: a conceptual discussion of its usefulness for environmental decision-making, Building and Environment, vol. 39, pp. 571-580, 2004.
Goldbaum, J., Pavement Design Progran Manager, Arizona Pavement / Materials Conference, November 16th, 2011.
Hajj, E. Y., Loria, L., and Sebaaly, P., Estimating effective performance grade of asphalt binders in high RAP mixtures using different methodologies: case study. Presented at 91st Annual Meeting of the Transportation Research Board, Washington, D.C., 2012.
Hajj, E. Y., Sebaaly, P. E., and Kandiah, P., Evaluation of the Use of Reclaimed Asphalt Pavement in Airfield HMA Pavements, Journal of Transportation Engineering, Vol. 136, No. 3, March 1, 2010. pp. 181-189.
Herbold, K. D., Using Monte Carlo Simulation for Pavement Cost Analysis, Public Roads Magazine, November/December 2000.
Horvath A. A life-Cycle Analysis Model and Decision-Support Tool for Selecting Recycled Versus Virgin Materials for Highway Applications, Final Report for RMRC, Project 23; 2004. (PaALTE)
Huang, Y., Bird, R., and Heidrich, O., Development of a life cycle assessment tool for construction and maintenance of asphalt pavements, Journal of Cleaner Production, vol. 17, pp. 283-296, 2009.
INDOT, Standards & Specifications, http://www.in.gov/dot/div/contracts/standards/ March 16, 2009 updates (accessed 2013. 2. 10)
Itoya, E., K. Hazell, S. Ison, A. El-Hamalawi, and M. W. Frost. A Framework for Carbon Emissions Evaluation of Road Maintenance. Presented at 91st Annual Meeting of the Transportation Research Board, Washington, D.C., 2012.
Jamshidi, A., Hamzah, M. O., Shahadan, Z., Selection of reclaimed asphalt pavement sources and contents for asphalt mix production based on asphalt binder rheological properties, fuel requirements and greenhouse gas emissions. Journal of Cleaner Production 23 (2012) 20-27.
Jeswani, H. K., Azapagic, A., Schepelmann, P., and Ritthoff, M., Options for broadening and deepening the LCA approaches, Journal of Cleaner Production, Vol. 18, Issue 2, pp. 120-127, 2010.
Jullien, A., Mon´eron, P., Quaranta, G., Gaillard, D., Air emissions from pavement layers composed of varying rates of reclaimed asphalt, Resources, Conservation and Recycling, Vol.47, pp. 356–374, 2006.
Kandhal, P. S. and R. B. Mallick. Pavement Recycling Guidelines for State and Local Governments. Publication FHWA-SA-98-042. FHWA, U.S. Department of Transportation, 1997.
Kim, S., Ceylan, H., Gopalakrishnan, K., Smadi, O., Brakke, C., Behnami, F., Verification of Mechanistic-Empirical Pavement Design Guide (MEPDG) Performance Predictions Using Pavement Management Information System (PMIS), 89th TRB anuual meeting, 2010.
Lee, N., Chou, C. P., and Chen, K. Y., Benefits in Energy Savings and CO2 Reduction by Using Reclaimed Asphalt Pavement, Transportation Research Board 91th Annual Meeting, Washington, D. C., January 22- 26, 2012.
Leng, Z. and Al-Qadi, I., Comparative Life Cycle Assessment between Warm SMA and Conventional SMA. Illinois Center for Transportation Research, Report ICT-11-090, 2011.
Lepert, P. and Brillet, F., The overall effects of road works on global warming gas emissions, Transportation Research Part D 14 (2009) 576–584.
Li, X., Marasteanu, M. O., Williams, R. C., and Clyne, T. R., Effect of RAP (Proportion and Type) and Binder Grade on the Properties of Asphalt Mixtures, Transportation Research Record: Journal of the Transportation Research Board, 2051, pp 90-97, 2008.
Lin, B., and Li, X., The effect of carbon tax on per capita CO2 emissions, Energy Policy, 39(2011) 5137-5146.
Mack, J. W., Accounting for Inflation in Life Cycle Cost Analysis for Pavement Type Selection, 2012 Annual Meeting of the Transportation Research Board.
Maupin, G.W., Diefenderfer, S. D. and Gillespie, J. S., Virginia’s Higher Specification for Reclaimed Asphalt Pavement, Transportation Research Record: Journal of the Transportation Research Board, No.2126, pp. 142-150, 2009.
Mearig, T., Coffee, N., and Morgan, M., 'Life Cycle Cost Analysis Handbook', State of Alaska - Department of Education & Early Development, 1st Edition, 1999.
Mid Atlantic Green Highways Partnership, Green-highway Technologies Plan, http://www.greenhighways.org/ewebeditpro/items/O130F11830.pdf.
Mroueh, U., Eskola, P., Laine-Ylijoki, J., Wellman, K., Juvankoski, E. M. M., and Ruotoistenmäki, A., 'Life cycle assessment of road construction', Finial Reports, Finnish National Road Administration, 2000.
Nantung, T. E., Implementing the Mechanistic-Empirical Pavement Design Guide for Cost Savings in Indiana, TR NEWS 271, 2010.
NAPA Special Report 200, Black and Green, Sustainable Asphalt, Now and Tomorrow, National Asphalt Pavement Association, Maryland, USA, September 2009.
Nash, T., G. A. Sholar, G. C. Page, and J. A. Musselman. Evaluation of High RAP Asphalt Mixture Performance in Florida. Presented at 91st Annual Meeting of the Transportation Research Board, Washington, D.C., 2012.
Nathman, R., S. McNeil, and T. J. Dam. Integrating Environmental Perspectives into Pavement Management: Adding the Pavement Life-Cycle Assessment Tool for Environmental and Economic Effects to the Decision-Making Toolbox. Transportation Research Record, No. 2093, 2009, pp. 40–49.
Ozbay, K., Jawad, D., Parker, N. A., Hussain, S., Life Cycle Cost Analysis: State-of-the-Practice vs State-of-the-Art, TRB 2004 Annual Meeting.
Park, K., Hwang, Y., Seo, S., Seo, H., Quantitative Assessment of Environmental Impacts on Life Cycle of Highways, Journal of Construction Engineering and Management, vol. 129, No. 1, February 1, 2003.
Podborochynski, D., C. Wandzura, M. Foth, R. Kelln, and R. Haichert. Sustainability of Using Crushed Reclaimed Asphalt Pavement (RAP) and Portland Cement Concrete (PCC) in a Road Structure. Presented at 91st Annual Meeting of the Transportation Research Board, Washington, D.C., 2012.
Praticò, F. G., A. Casciano, and D. Tramontana. Pavement Life-Cycle Cost and Asphalt Binder Quality: Theoretical and Experimental Investigation. Journal of Construction Engineering and Management, Vol. 137, No. 2, 2011, pp. 99-107.
Said, D., W. B. Trusty, C. Goemans, G. Finlayson, and F. Portalupi. Life Cycle Assessment of Roadways Using a Pavement Sustainability Tool. Presented at 91st Annual Meeting of the Transportation Research Board, Washington, D.C., 2012.
Santero, N. J., Harvey, J., Horvath, A., Environmental policy for long-life pavements. Transportation Research Part D 16 (2011) 129–136.
Schroer, J., Local Calibration of the MEPDG for HMA Pavements in Missouri, 2012 NCAUPG Annual Meeting Indianapolis, IN, February 16, 2012.
Staniskis, J. K., and Stasiskiene, Z., Environmental management accounting in Lithuania: exploratory study of current practices, opportunities and strategic intents, Journal of Cleaner Production, vol. 14, pp. 1252-1261, 2006.
Stoeglehner, G. and Narodoslawsky, M., Implementing ecological footprinting in decision-making processes, Land Use Policy, vol. 25, pp.421–431, 2008.
Stripple, H., Life Cycle Assessment of Road A Pilot Study for Inventory Analysis (Second Revised Edition). For the Swedish National Road Administration. 2001. Gothenburg, Sweden.
Tao, M., Zhang, Z., and Wu, Z., Simple Procedure to Assess Performance and Cost Benefits of Using Recycled Materials in Pavement Construction. Journal of Materials in Civil Engineering, Vol. 20, No. 11, 2008. 718-725.
Tarbox, S. and J. S. Daniel. Effects of Long Term Oven Aging on RAP Mixtures. Presented at 91st Annual Meeting of the Transportation Research Board, Washington, D.C., 2012.
Tung H., Cédric, D., Anne, V., Agnès, J., Gilles, L., A global tool for environmental assessment of roads- Application to transport for road building. European Transport Conference, Strasbourg, France, 3 - 5 October 2005. http://www.ectri.org/YRS05/Papiers/Session-3bis/ventura.pdf (assessed 2013, April)
Velasquez, R., Hoegh, K., Yut, I., Funk, N., Cochran, G., Marasteanu, M. and Khazanovich, L., Implementation of the MEPDG for New and Rehabilitated Pavement Structures for Design of Concrete and Asphalt Pavements in Minnesota, 2009.
Walls, J. and Smith, M. R., Life-Cycle Cost Analysis in Pavement Design. FHWA-SA-98-079, 1998.
Wayman, M. et al., Life Cycle Assessment of Reclaimed Asphalt, European Community’s Seventh Framework Programme (FP7/2007–2013) under grant agreement no. 218747, 2012.
West, R., Kvasnak, A., Tran, N., Powell, B. and Turner, P., Testing of Moderate and High Reclaimed Asphalt Pavement Content Mixes, Transportation Research Record, Journal of the Transportation Research Board, No. 2126, pp. 100-108, 2009.
Wu, Z., Yang, X., and Zhang, Z., Evaluation of MEPDG flexible pavement design using pavement management system data: Louisiana experience. International Journal of Pavement Engineering, Vol. 14, No. 7, pp.674-685, 2013.
Zhang, Z., Wu, X., Yang, X., and Zhu, Y., BEPAS -a life cycle building environmental performance assessment model, Building and Environment, vol. 41, pp. 669-675, 2006.
中油公司2011年報中文版。
中油公司編輯,永續發展報告書,pp. 24-39. 2012年。
交通部「節能減碳規劃設計參考原則」,2010年5月。
交通部運輸研究所,永續的道路規劃與設計規範之研究,2003年。
朱崇德、林登峰,高黏度瀝青膠泥與轉爐石對 SMA施工特性,2012年轉爐石瀝青混凝土研討會,2012年12月14日。
行政院公共工程委員會,永續公共工程-節能減碳政策白皮書,2008。
行政院公共工程委員會,永續公共工程-道路生態工程,http://eem.pcc.gov.tw/taxonomy/term/389 (Accessed 2012/12/17)
行政院公共工程委員會,建立道路工程綠營建審議指標之研究,研究計畫930030,2004。
行政院公共工程委員會,振興經濟擴大公共建設投資計畫落實節能減碳執行方案,2009
行政院公共工程委員會,綠營建工程方案─推動綠營建工程評估審議制度及評估指標之研究,研究計畫PCC91-技-07,2011年。
行政院節能減碳推動會,國家節能減碳總計畫,2010年5月11日。
行政院經濟建設委員會,「國家節能減碳總行動方案」99年度工作計畫CO2減量目標及相關建議,行政院節能減碳推動會第5次會議,2010年10月13日。
行政院環保署,中華民國國家溫室氣體清冊報告,2014年12月。
行政院環保署,未來國家綠能低碳總行動方案推動規劃及105年工作計畫,行政院綠能低碳推動會105年度第1次委員會議,2016b年1月5日。
行政院環保署,未來國家綠能低碳總行動方案推動規劃及105年工作計畫,行政院綠能低碳推動會105年度第1次委員會議,2016年1月5日。
行政院環保署,國家綠能低碳總行動方案103年度工作計畫,2014 年7月
行政院環保署,國家綠能低碳總行動方案104年度工作計畫彙整評析,行政院綠能低碳推動會103年度第2次委員會議,2014b年12月29日。
行政院環境保護署,我國溫室氣體減量承諾「國家自定預期貢獻」(INDC),2016a年4月6日。
行政院環境保護署、工業技術研究院,我國溫室氣體適當減緩行動(NAMAs)成果展現暨後續規劃重點,2010。
吳國洋,混凝土製品應用於土木工程之減碳效益評估-以道路、建築工程為例,中央大學土木系碩士論文,2011。
李英豪、葛湘瑋,美國最新公路鋪面暫行手冊之評估與應用(I),國科會研究計畫NSC96-2221-E032-036,2007.
李寧、周家蓓,使用再生瀝青混凝土之節能與減碳效益探討,第九屆鋪面工程材料再生及再利用學術研討會,2012年11月,東南科技大學,台北。
沈得縣,李素馨,蘇南,劉霈,道路工程建立綠營建工程設計規範及設計準則,行政院公共工程委員會研究計畫報告,計畫編號PCC90技10,2001年。
周家蓓,「落實節能減碳於鋪面工程之可行性研究」,行政院國家科學委員會研究報告,2011b年8月。(NSC 98-2221-E-002-115-MY2)
周家蓓、林宜蓉、李寧,溫拌瀝青混凝土之性質與績效─相關文獻彙整分析與探討,第十六屆鋪面工程學術研討會暨2011世界華人鋪面專家聯合學術研討會論文集,p.14,2011a年10月,國立中興大學土木工程學系,台中。
林志忠,公共工程使用再生材料落實節能減碳初步探討,中央大學土木系碩士論文,2010。
林琳,新工及整建路面平坦度驗收門檻值,國立台灣大學土木系碩士論文,2012。
國家永續發展委員會,台灣二十一世紀議程-國家永續發展願景與策略綱領,2004。
國家發展委員會,「國家綠能低碳總行動方案」103年第 4 季(含全年)執行檢討報告,2015年2月
國道高速公路局,道路養護,更新日期2015年9月8日。104.12.5查詢http://www.freeway.gov.tw/Publish.aspx?cnid=91&p=32
張新財,SMA路面的性能與成本效益分析,遼寧省交通高等專科學校學報,第6卷第2期,2004年。
張廖年禧,國道高速公路鋪設石膠泥及排水性瀝青混凝土成效之研究,中央大學碩士論文,2004。
張蕙蘭, 國外焚化底渣再利用介紹,永續產業發展雙月刊,Vol. 12,pp.55-64,2003。
陳一昌,建構鋪面施工平坦度獎金機制之研究,國立台灣大學土木系博士論文,2008.
陳一昌等,交通運輸工程碳排放量推估模式建立與效益分析之研究,交通部運研所研究報告,MOTC-IOT-100-EDB004 (ISBN978-986-03-2635-2),2012年。
陳建旭、廖敏志,石膠泥瀝青混凝土(SMA)鋪面之材料、配比設計與施工,臺灣公路工程第 37 卷第 3 期,頁16-43,2011年。
黃于玻,國道建設運用綠營建手法案例:以三芝北投公路設計為例,綠營建道路工程研討會,2005。
黃文正,力學經驗鋪面設計法應用於台灣瀝青混凝土鋪面,成功大學土木系碩士論文,2009。
黃榮堯,道路建設綠營建評估指標系統,綠營建道路工程研討會,2005。
溫室氣體減量與管理法,2015年7月。
經濟部,永續能源政策綱領,2008。
葉政嚳,道路建設綠營建評估指標系統之研究,國立中央大學土木工程學研究所,碩士論文,2004年。
蔡宏達,廢輪胎處理技術之環境與經濟成本比較研究,臺北大學自然資源與環境管理研究所碩士論文,2008年。
駱尚廉、蕭代基,「環境經濟分析」,曉園出版社,台北,2007。
環保署,產品碳足跡資料庫,2013。https://cfp-calculate.tw/cfpc/WebPage/WebSites/CoefficientDB.aspx
環保署,開發行為應實施環境影響評估細目及範圍認定標準,2012年修訂
環境影響評估法, 1994
簡正樑,建立以鋪面平坦度做為付款調整因子之架構,國立成功大學碩士論文,2006。
簡圳銘,石膠泥瀝青混凝土之試鋪實例研究,中華大學土木系碩士論文,2003。
蘇漢邦、莊建鏵,能源稅與碳稅之減量成本與所得福利分析,兩岸低碳社會與綠色成長推動策略研討會,2011年9月。
行政院公共工程委員會,振興經濟擴大公共建設落實節能減碳執行方案,2009。
行政院國家永續發展委員會,台灣永續發展指標評量報告書, 2011。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50071-
dc.description.abstract為找出適用我國環境的鋪面整修節費減碳策略、了解鋪面整修時之成本與二氧化碳排放量之關聯性,進而評估鋪面整修減碳對於國家減碳目標的貢獻潛力,本研究以鋪面工程之整修為標的,透過文獻回顧、專家訪談與模式推導等方式,發現對於節費減碳最重要之關鍵在於「降低單次施工所需之天然資源使用量」以及「減少分析年限內所需之施工次數」,可分由材料、施工和設計三方面加以著手研擬適用之節費減碳方案,可能之方向包含:使用再生瀝青混凝土、提升施工品質(降低初始IRI)、增加密級配結構厚度以及改使用SMA進行刨除回鋪等四類。
研究以生命週期觀點量化評估各種策略在節費與減碳之適用性,將分析年限長度設定為40年,使用美國AASHTO 最新版本之MEPDG鋪面設計法軟體,搭配符合國內國道之基本環境條件進行交通量及鋪面結構設定,進行每次刨除重鋪之服務壽年預測,進而對各方案於分析年限內之財務成本花費與二氧化碳排放量進行盤查。評估結果顯示,提升施工品質(降低初始IRI)之策略均既節費又減碳,於財務永續和環境永續方面均有最佳的成效。效率次之則為使用再生瀝青混凝土,在節費和減碳上均有正面效益。加厚密級配厚度於中交通量時對節費及減碳兩項指標均無正面效益,財務成本上造成的負面效應較環保的影響要大,僅有在高交通量時,若不過度加厚密級配結構,則略有減碳效果但花費之成本仍高於0方案。使用SMA混凝土取代刨除回鋪時之一般瀝青混凝土能夠節費也能減碳,財務節省效果相當好,比使用再生瀝青混凝土表現更佳,但減碳效果不明顯,其生命週期內之排碳量幾乎與0方案相同。短期內,我國主管機關若欲追求節費與減碳,應先從兩方面績效均最佳,且最容易推動達成之提升施工品質做起。
溫室氣體減量與管理法之通過後,未來行政院各部會均配有各自之減碳責任,且碳排放將會被量化以配額方式管制。我國目前尚未開始對二氧化碳排放徵收排放費或碳稅,但若未來各項施工活動必須被課徵碳稅或購買碳排放權時,使用添加刨除料之再生瀝青混凝土可負荷每公斤1.70元至8.37元之碳價,已較我國一般減碳成本每公噸750元(約每公斤0.75元)明顯要高,而降低初始IRI則可提供更高之排碳成本容忍度,故未來交通部可考慮使用減碳效果較佳的整修策略來換取更多排放權。
鋪面整修之節能減碳迄今並未被納入交通部之節能減碳行動方案中。以現況而言環保署建議交通部應分配每年約79.2萬公噸二氧碳之減量責任。依據本就之估算結果,鋪面整修時若將初始IRI降低至100 in./mi. (約1.57m/km),平均每年可以減碳10,831噸,佔運輸部門一年需減碳79.2萬公噸之1.37%。對於我國現況而言,提升鋪面刨除除鋪施工品質、延長每次整修的服務壽命實為首要工作。
zh_TW
dc.description.abstractThe aim of the study is to find out feasible strategies for cost-saving and carbon reducing of pavement rehabilitation (milling and overlay) and estimate the potential of CO2 reduction of pavement rehabilitation strategies by lifecycle cost inventory and CO2 emission inventory. According to literature review, expert interview, and model derivation, it was found that the most important factors for cost saving and CO2 reduction are lower expense of natural material and longer service life of each milling and overlay. Alternatives evaluated in this study are designed based on change of material (by reclaimed asphalt mixture and stone matrix asphalt mixture, improve construction quality (providing lower initial roughness), and thicker dense grade layer of the pavement structure. The length of the analysis period in this study is 40 years of operation and maintenance of pavement that set based on the characteristic of the National Freeway in Taiwan. The software of AASHTO (American Association of State Highway and Transportation Officials) latest design guide, MEPDG (Mechanistic-Empirical Pavement Design Guide) is used to predict the length of service life that every milling and overlay provides of each alternative. All factors that used in the simulation, like amount of daily truck traffic, basic structure, and climate are set as close as possible to the real situation in Taiwan.
The analysis shows that lower initial IRI (International Roughness Index) leads to the least CO2 emission and rehabilitation cost. Improving the construction quality provides the best performance for financial and environmental sustainability. Secondly, using reclaimed asphalt mixture also shows good performance in the two phases. Thicker dense grade layer does not benefit to neither economical nor environmental phases. Using SMA mixture as replacement of part of dense grade layer has benefits on cost saving, but does not make significant contribution to CO2 reduction. For the short term, improving construction quality is what Taiwanese highway agencies should do first to save maintenance cost and reduce CO2 emission.
Although Taiwanese government does not levy a tax on CO2 emission so far, with the trend of CO2 reduction across the world, it is possible that all of the emission must pay for carbon rights. Since some of the alternatives evaluated in this study shows good performance on reducing CO2 emission, like lower initial IRI and use reclaimed asphalt mixture, those methods should be applied to exchange more carbon rights for road rehabilitation. Those alternatives also provide good potential on CO2 reduction. For example, it is suggest that the authority must reduce 7.92 million tons of CO2 every year to meet the national emission reduction targets. According to the inventory in this study, if the initial IRI of highway pavement has been lower to 100 in./mi. (1.57 m/km), the amount of CO2 emission would decease 10,831 tons, about 1.37% of the reduction target (7.92 million tons). Improving the construction quality is undoubtedly the most urgent task for Taiwanese road agencies.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:29:03Z (GMT). No. of bitstreams: 1
ntu-105-F95521512-1.pdf: 2026441 bytes, checksum: 764413bed9dbeebde9a4aaa290205e9d (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents致 謝 i
中文摘要 iii
英文摘要 v
目 錄 vii
圖目錄 ix
表目錄 xi
第一章 前言 1
1.1 研究動機 1
1.2 研究目的 2
1.3 研究流程與方法 4
第二章 文獻回顧 11
2.1我國減碳政策之背景及目標 11
2.2 生命週期評估與決策 17
2.3 鋪面工程對環境影響 25
2.4鋪面工程減碳策略 34
第三章 評估方案與方法 49
3.1 鋪面工程環境衝擊之影響因素 49
3.2 專家訪談 54
3.3 鋪面工程減碳可行策略彙整 66
3.4 評估方法 73
第四章 整修服務壽命及使用材料 85
4.1鋪面服務壽年預測 85
4.2 各方案服務壽年模擬結果 99
4.3 材料組成 103
第五章 生命週期盤查 109
5.1 生命週期成本 109
5.2 生命週期排碳 117
5.3 小結 128
第六章 綜合討論 133
6.1 鋪面工程之排碳密集度 133
6.2 鋪面整修碳價值 135
6.3 鋪面工程的減碳潛力 141
第七章 結論與建議 149
7.1 結論 149
7.2 建議 151
參考文獻 155
dc.language.isozh-TW
dc.subject鋪面整修zh_TW
dc.subject節能減碳zh_TW
dc.subject生命週期成本zh_TW
dc.subject生命週期評估zh_TW
dc.subject鋪面整修zh_TW
dc.subject節能減碳zh_TW
dc.subject生命週期成本zh_TW
dc.subject生命週期評估zh_TW
dc.subjectCO2 reductionen
dc.subjectLCAen
dc.subjectLCCAen
dc.subjectPavement rehabilitationen
dc.subjectCost savingen
dc.subjectCost savingen
dc.subjectPavement rehabilitationen
dc.subjectLCAen
dc.subjectLCCAen
dc.subjectCO2 reductionen
dc.title鋪面整修工程之節費與減碳對策zh_TW
dc.titleCost Saving and Carbon Reduction Strategies of Pavement Rehabilitationen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳建旭(Jian-Shiuh Chen),許聿廷(Yu-Ting Hsu)
dc.subject.keyword鋪面整修,節能減碳,生命週期成本,生命週期評估,zh_TW
dc.subject.keywordPavement rehabilitation,Cost saving,CO2 reduction,LCCA,LCA,en
dc.relation.page164
dc.identifier.doi10.6342/NTU201602029
dc.rights.note有償授權
dc.date.accepted2016-08-08
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
1.98 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved