Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50052
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐宏民
dc.contributor.authorWei-Tse Sunen
dc.contributor.author孫唯哲zh_TW
dc.date.accessioned2021-06-15T12:28:39Z-
dc.date.available2017-01-01
dc.date.copyright2016-08-24
dc.date.issued2016
dc.date.submitted2016-08-08
dc.identifier.citation[1] S. Bakhshi, D. A. Shamma, L. Kennedy, and E. Gilbert. Why we filter our photos and how it impacts engagement. In Ninth International AAAI Conference on Web and Social Media, 2015.
[2] Z. Chen, T. Jiang, and Y. Tian. Quality assessment for comparing image enhancement algorithms. In Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on, pages 3003–3010. IEEE, 2014.
[3] S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity metric discriminatively, with application to face verification. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, volume 1, pages 539–546. IEEE, 2005.
[4] R. Datta, D. Joshi, J. Li, and J. Z.Wang. Studying aesthetics in photographic images using a computational approach. In Computer Vision–ECCV 2006, pages 288–301. Springer, 2006.
[5] Z. Dong, X. Shen, H. Li, and X. Tian. Photo quality assessment with dcnn that understands image well. In MultiMedia Modeling, pages 524–535. Springer, 2015.
[6] R. Girshick. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, pages 1440–1448, 2015.
[7] K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolutional networks for visual recognition. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 37(9):1904–1916, 2015.
[8] E. Hoffer and N. Ailon. Deep metric learning using triplet network. In Similarity-Based Pattern Recognition, pages 84–92. Springer, 2015.
[9] P. Isola, J. Xiao, A. Torralba, and A. Oliva. What makes an image memorable? In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pages 145–152. IEEE, 2011.
[10] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe:Convolutional architecture for fast feature embedding. In Proceedings of the ACM International Conference on Multimedia, pages 675–678. ACM, 2014.
[11] L. Kang, P. Ye, Y. Li, and D. Doermann. Convolutional neural networks for noreference image quality assessment. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1733–1740, 2014.
[12] Y. Ke, X. Tang, and F. Jing. The design of high-level features for photo quality assessment. In Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, volume 1, pages 419–426. IEEE, 2006.
[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, pages 1097–1105, 2012.
[14] M. Lin, Q. Chen, and S. Yan. Network in network. arXiv preprint arXiv:1312.4400, 2013.
[15] X. Lu, Z. Lin, H. Jin, J. Yang, and J. Z. Wang. Rapid: Rating pictorial aesthetics using deep learning. In Proceedings of the ACM International Conference on Multimedia, pages 457–466. ACM, 2014.
[16] X. Lu, Z. Lin, H. Jin, J. Yang, and J. Z. Wang. Rating image aesthetics using deep learning. IEEE Transactions on Multimedia, 17(11):2021–2034, 2015.
[17] X. Lu, Z. Lin, X. Shen, R. Mech, and J. Z. Wang. Deep multi-patch aggregation network for image style, aesthetics, and quality estimation. In Proceedings of the IEEE International Conference on Computer Vision, pages 990–998, 2015.
[18] W. Luo, X. Wang, and X. Tang. Content-based photo quality assessment. In Computer Vision (ICCV), 2011 IEEE International Conference on, pages 2206–2213. IEEE, 2011.
[19] Y. Luo and X. Tang. Photo and video quality evaluation: Focusing on the subject. In Computer Vision–ECCV 2008, pages 386–399. Springer, 2008.
[20] L. Marchesotti, F. Perronnin, D. Larlus, and G. Csurka. Assessing the aesthetic quality of photographs using generic image descriptors. In Computer Vision (ICCV), 2011 IEEE International Conference on, pages 1784–1791. IEEE, 2011.
[21] W. Mason and S. Suri. Conducting behavioral research on amazon's mechanical turk. Behavior research methods, 44(1):1–23, 2012.
[22] A. Mittal, A. K. Moorthy, and A. C. Bovik. No-reference image quality assessment in the spatial domain. Image Processing, IEEE Transactions on, 21(12):4695–4708, 2012.
[23] N. Murray, L. Marchesotti, and F. Perronnin. Ava: A large-scale database for aesthetic visual analysis. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pages 2408–2415. IEEE, 2012.
[24] J. Redi and I. Povoa. Crowdsourcing for rating image aesthetic appeal: Better a paid or a volunteer crowd? In Proceedings of the 2014 International ACM Workshop on Crowdsourcing for Multimedia, pages 25–30. ACM, 2014.
[25] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object detection with region proposal networks. In Advances in Neural Information Processing Systems, pages 91–99, 2015.
[26] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.
[27] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1–9, 2015.
[28] J. Wang, Y. Song, T. Leung, C. Rosenberg, J. Wang, J. Philbin, B. Chen, and Y. Wu. Learning fine-grained image similarity with deep ranking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1386–1393, 2014.
[29] J. Yan, S. Lin, S. B. Kang, and X. Tang. A learning-to-rank approach for image color enhancement. In Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on, pages 2987–2994. IEEE, 2014.
[30] Z. Zhang, P. Luo, C. C. Loy, and X. Tang. Facial landmark detection by deep multitask learning. In Computer Vision–ECCV 2014, pages 94–108. Springer, 2014.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50052-
dc.description.abstract近幾年,隨著智慧型手機以及3G網路的普及,社群網路平台的使用人數大幅地上升。因此,使用者也逐漸習慣在這些平台上分享圖片,並藉此吸引更多關注。為了讓使用者能在圖片上增加不同的效果或改善圖片的品質,許多社群網路平台提供濾鏡給使用者使用。透過濾鏡的使用,使用者可以在沒有任何修圖基礎下,輕易地改變圖片的外貌。但是隨著濾鏡數量的成長,如何在短時間選擇最好的濾鏡就成為使用上最大的問題。因此,在這種圖片品質的排名問題中,學習圖片的美學就成為很重要的一部份。在最近的研究中顯示,卷積神經網路在圖片美學的分類上的表現已經超越過去傳統的做法。在這篇論文中,我們將介紹一種新的方法來學習圖片的美學,同時利用圖片的比較來建立一個新的數據集。此外,我們使用不同的卷積神經網路架構以及圖片配對比較的損失函數幫助圖片美學的學習。藉由兩張圖片間的比較結果,我們的訓練模型能夠將圖片的美學反應嵌入隱藏層中。除此之外,我們也利用圖片的主題類別幫助美學排名的學習。為了訓練並評估我們的方法,我們建立了一個新的數據集。裡面包含多於三萬張套用過濾鏡的圖片,以及四萬多個經過人工標註的圖片配對。就我們所知,這是第一個使用濾鏡過的圖片及其美學標註的數據集。我們的實驗結果也顯示利用圖片配對的比較方法能夠比傳統的美學分類方法達到更好的表現。zh_TW
dc.description.abstractNowadays, social media have become popular platforms for the public to share photos. To apply effects on a photo or improve its quality, most social media provide filters by which users can change the appearance of their photos without domain knowledge. However, due to the growing number of filter types, it becomes a major issue for users to choose the best filter type instantly. For this purpose, learning image aesthetics takes an important role in image quality ranking problems. In these years, several research has proved that Convolutional Neural Networks (CNNs) outperform traditional methods in image aesthetic categorization, which classifies images into high or low quality. In this paper, we introduce a new method for image quality learning and a dataset of filtered images with comparison. Instead of binarizing image quality, we use different CNN architectures and a pairwise comparison loss function to learn the aesthetic response for an image. By utilizing pairwise image comparison, the models embed aesthetic responses in the hidden layers. Moreover, to improve the aesthetic ranking, the image category is integreated into the aesthetic-oriented models. To train our models and evaluate our method, we introduce a new dataset called Filter Aesthetic Comparison Dataset (FACD). The dataset contains more than 30,000 filtered images based on the AVA dataset and more than 40,000 image pairs with quality comparison annotations using Amazon Mechanical Turk. To our best knowledge, it is the first dataset containing filtered images and the user preference labels. The experimental results show that our method which learns aesthetic ranking by pairwise comparison outperforms the traditional aesthetic classification methods.en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:28:39Z (GMT). No. of bitstreams: 1
ntu-105-R03922071-1.pdf: 5382811 bytes, checksum: 72750fca80e64209f2937ec436199077 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontentsContents
致謝 i
摘要 ii
Abstract iii
List of Figures vii
List of Tables x
Chapter 1 Introduction 1
Chapter 2 Related Work 6
Chapter 3 Dataset - Filter Aesthetic Comparison Dataset (FACD) 9
3.1 Image Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Filtered Image Comparison . . . . . . . . . . . . . . . . . . . . . . . . 10
Chapter 4 Proposed Method 15
4.1 CNN Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Aesthetic Response Learning by Pairwise Comparison . . . . . . . . . 19
4.3 Improve Filter Preference by Category . . . . . . . . . . . . . . . . . 20
Chapter 5 Experiments 23
5.1 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.1.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.1.2 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.1.3 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Chapter 6 Conclusion and Future Work 33
Bibliography 34
dc.language.isoen
dc.subject濾鏡zh_TW
dc.subject配對比較zh_TW
dc.subject美學zh_TW
dc.subject濾鏡zh_TW
dc.subject卷積神經網路zh_TW
dc.subject配對比較zh_TW
dc.subject美學zh_TW
dc.subject卷積神經網路zh_TW
dc.subjectConvolutional Neural Networken
dc.subjectFilteren
dc.subjectFilteren
dc.subjectAestheticen
dc.subjectConvolutional Neural Networken
dc.subjectAestheticen
dc.subjectPairwise Comparisonen
dc.subjectPairwise Comparisonen
dc.title利用圖片美學的學習進行濾鏡推薦zh_TW
dc.titlePhoto Filter Recommendation by Image Aesthetic Learningen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳文進,葉梅珍,陳祝嵩,李宏毅
dc.subject.keyword卷積神經網路,濾鏡,美學,配對比較,zh_TW
dc.subject.keywordConvolutional Neural Network,Filter,Aesthetic,Pairwise Comparison,en
dc.relation.page37
dc.identifier.doi10.6342/NTU201602022
dc.rights.note有償授權
dc.date.accepted2016-08-08
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
5.26 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved