Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50041
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李雨(U Lei)
dc.contributor.authorChing-Hao Yangen
dc.contributor.author楊謦豪zh_TW
dc.date.accessioned2021-06-15T12:28:24Z-
dc.date.available2016-08-24
dc.date.copyright2016-08-24
dc.date.issued2016
dc.date.submitted2016-08-08
dc.identifier.citation[1] J. C. Maxwell, 'A treatise on electricity and magnetism,' Clarendon Press, Oxford, 1891.
[2] S. U. S. Choi, 'Enhancing thermal conductivity of fluids with nanoparticles,' in Developments and Applications of Non-Newtonian Flows, D. A. Singer and H. P. Wang, Eds., American Society of Mechanical Engineers, New York, FED-231/MD-66, 99-105, 1995.
[3] D. A. G. Bruggeman, 'Berechnung Verschiedener Physikalischer Konstanten von Heterogenen Substanzen, I. Dielektrizitatskonstanten und Leitfahigkeiten der Mischkorper aus Isotropen Substanzen,' Annalen der Physik, Leipzig, 24, 636-664, 1935.
[4] R. L. Hamilton, and O. K. Crosser, 'Thermal Conductivity of Heterogeneous Two-Component Systems', Industrial and Engineering Chemistry Fundamentals, 1, 187-191, 1962.
[5] C. W. Nan, T. Birringer, D. R. Clarke and H. Gleiter, 'Effective thermal conductivity of particulate composites with interfacial thermal resistance,' Journal of Applied Physics, 81, 6692-6699, 1997.
[6] W. Yu, and S. U. S. Choi, 'The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Maxwell model,' Journal of Nanoparticle Research, 5, 167-171, 2003.
[7] W. Yu and S. U. S. Choi, 'The Role of Interfacial Layers in the Enhanced Thermal of Nanofluids: A renovated Hamilton-Crosser model,' Journal of Nanoparticle Research, 6, 355-361, 2004.
[8] B. X. Wang, L. P. Zhou and X. F. Peng, 'A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles,' International Journal of Heat and Mass Transfer, 46, 2665-2672, 2003.
[9] R. Prasher, P. Bhattacharya and P. E. Phelan, 'Thermal conductivity of nanoscale colloidal solutions (Nanofluids),' Physical Review Letters, 94, 025901, 2005.
[10] R. Prasher, P. E. Phelan and P. Bhattacharya, 'Brownian-motion-based convective-conductive model for the effective thermal conductivity of nanofluids,' ASME Journal of Heat Transfer, 128, 588-595, 2006.
[11] R. Prasher, P. Bhattacharya and P. E. Phelan, 'Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid),' Nano Letters, 6(7), 1529-1534, 2006.
[12] J. Jiang, G. Oberd?rster, and P. Biswas, 'Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies,' Journal of Nanoparticle Research, 11, 77-89, 2009.
[13] E. V. Timofeeva, A. N. Gavrilov, J. M. McCloskey, and Y. V. Tolmachev, 'Thermal conductivity and particle agglomeration in alumina nanofluids: Experiment and theory,' Physical Review E, 76, 061203,2007.
[14] U. Lei, R.-B. Huang, B.-L. Hsieh and H.-I. Yeh, 'The role of Brownian motion and particle agglomeration on the transport properties of nanofluids,' Proceedings of the First Pacific Rim Thermal Engineering Conference, Paper No.:PRTEC-15056,Hawaii's Big Island, USA, March 13-17, 2016.
[15] H. C. Hamaker, 'The London-van der Waals attraction between spherical particles,' Journal of Physics A: Statistical Mechanics and its Applications, 4, 1058-1072, 1937.
[16] J. N. Israelachvilli, 'Intermolecular and surface forces,' 3rd ed., Academic Press 2011.
[17] Von N. Fuchs '?ber die stabilit?t und aufladung der aerosole,' Zeitschrift f?r Physik, 89, 736-743, 1934.
[18] S. K. Friedlander, 'Smoke, dust, and haze - Fundamentals of aerosol dynamics,' 2 nd ed., Oxford University Press, 2000.
[19] H. Reerink and J. Th. G. Overbeek, 'The rate of coagulation as a measure of the stability of silver iodide sols,' Faraday Society, 18, 74-84, 1954.
[20] E. J. Hinch, 'Application of the Langevin equation to fluid suspensions,' Journal of Fluid Mechanics, 72, 499-511, 1975.
[21] A. Einstein, 'On the Motion - Required by the Molecular Kinetic Theory of Heat - of Small Particles Suspended in a Stationary Liquid,' Annalen der Physik, 17(8), 549-560, 1905.
[22] G. K. Batchelor, 'The effect of Brownian motion on the bulk stress in a suspension of spherical particles,' Journal of Fluid Mechanics, 83(1), 97-117, 1977.
[23] 黃榮斌,'以暫態熱面法量測奈米流體的熱傳導係數', 國立台灣大學應用力學所碩士論文, 2015.
[24] 黃國榮,'聲波及布朗擴散對次微米微粒聚結效應的研究', 國立台灣大學應用力學所碩士論文, 2002.
[25] 羅凱升,'兩項微粒聲波聚集模式的數值研究', 國立台灣大學應用力學所碩士論文, 2003.
[26] 劉義賢,'駐波場中次微米微粒聚結之研究', 國立台灣大學應用力學所碩士論文, 2003.
[27] E. Riera-Franco de Sarabia and J. A. Gallego-Juarez, 'Ultrasonic agglomeration of micron aerosols under standing wave conditions,' Journal of Sound and Vibration, 110, 413-427, 1986.
[28] S. V. Patankar, 'Numerical heat transfer and fluid flow,' Hemisphere publishing Cooperation, New York, 1980.
[29] C. M. Kok and A. Rudin, 'Relationship between the hydrodynamic radius and the radius of gyration of a polymer in solution,' Die Makromolekulare Chemie, Rapid Communications, 2, 655-659, 1981.
[30] J. D. Landgrebe and S. E. Pratsinis, 'A discrete- sectional model for particulate production by gas-phase chemical reaction and aerosol coagulation in the free-molecular regime,' Journal of Colloid and Interface Science, 139, 63-86, 1990.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50041-
dc.description.abstract奈米流體乃是懸浮有奈米尺寸粒子的液體,文獻中對此流體進行研究其中目的之一是為了開發出具有更佳散熱效果的冷卻劑,而其中奈米粒子可為金屬或非金屬材料、且形狀不拘。然而隨著時間演變,奈米粒子會由於本身布朗運動(Brownian motion)的關係而不斷相互碰撞,聚結成更大顆的粒子,導致沉澱的現象發生而失去其原本的效用,故本論文旨在探討奈米流中粒子的聚結現象及其對熱傳導係數的影響,共進行以下三項研究:(1)粒子平均粒徑大小隨時間的演變行為,(2)聚結效應對奈米流體熱傳導係數的影響,(3)聚結過程中粒子粒徑分布的變化。就第(1)項,我們使用碎形模式(fractal model)來預測平均粒徑的變化、並對粒徑及界達電位(zeta potential)進行實驗量測,發現碎形模式理論無法很好地預測到實驗量測到的粒徑大小;但如採用Lei等人考量粒子微觀運動的聚結理論,則有較合理的結果。故我們將實際量測到的粒徑大小作為當前的粒徑,採用Prasher等人的理論就第(2)項奈米流體的熱傳導係數進行計算,對於二氧化鈦奈米流體在體積分率為1%、1.5%及2%時,理論計算與實驗結果相互吻合,並發現奈米流體中粒子適當的聚結對其散熱方面是有幫助。就第(3)項粒徑分布方面,我們考慮在粒子質量守恆下的一維通用動力方程式(general dynamic equation),並利用粒子隨體積呈對數常態分佈(log-normal distribution)的關係,將其簡化成一常微分方程式,透過克蘭克-尼可森(Crank-Nicolson)法將其時間離散化進行求解。在上述理論模式的聚結項中,我們僅考慮由布朗運動引致的布朗聚結(Brownian coagulation)行為,並從數值計算與實驗結果得知,奈米流體的初始總粒數濃度、粒子間作用力及溶液離子強度等皆為影響粒子聚結的重要因素。
以上這些理論分析模式除了讓我們更了解奈米流體中粒子聚結背後的物理作動機制外,希望本論文對日後欲投入相關研究的學者或是奈米流體的應用方面上也有一定的幫助。
zh_TW
dc.description.abstractNanofluid is a liquid suspended stably with nano size particles, and it attracts many research efforts because it has a potential to be an excellent coolant. The nano particles could be metal or non-metal, and of different geometric shapes. Because of the Brownian motion, the particles could collide one another and form agglomerates with time, and might precipitate. In such a situation, the nanofluid loses its ability of heat transfer enhancement. The goal of this thesis is to study the particle agglomeration and its effect on thermal conductivity of nanofluid, and focus on: (1) the time evolution of the particle agglomerates, (2) the effect of particle agglomeration on thermal conductivity, and (3) the size distribution of particles during agglomeration. For item (1), we employ the fractal model in literature for predicting the time evolution of average particle size, and measure the average diameter and zeta potential of the particles. The fractal model fails to predict the time evolution of particle diameter, but a recent model by Lei et al. based on the microscopic motion of particles does predict correctly the experimental findings. Thus the experimental particle diameters, instead of the diameters predicted using fractal model, were incorporated with the model of Prasher et al. for item (2) for predicting the thermal conductivity. The theoretical results agree nicely with the experiments of TiO2-water nanofluids for volume fraction from 1 – 2%. It was found that particle properly agglomerate in nanofluids, which is helpful for its heat transfer. For item (3), simulations were performed based on the one-dimensional general dynamic equation subject to Brownian coagulation, together with the log-normal distribution assumption for particles, and the Crank-Nicolson scheme. It was found that the initial particle number concentration, the interaction forces between particles, and the ionic strength of the nanofluid are crucial for particle agglomeration. It is hoped that the present study can provide us a better understand of the physics of particle agglomeration in nanofluids, which is helpful for further research and application.en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:28:24Z (GMT). No. of bitstreams: 1
ntu-105-R03543029-1.pdf: 2359376 bytes, checksum: 0bf5749d1bd5229bb2eb9efd698ad9cd (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents致謝 I
摘要 II
Abstract III
目錄 V
圖目錄 VII
表目錄 XIV
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 3
1-3 研究動機 10
1-4 本文架構 11
第二章 奈米粒子聚結與奈米流體熱傳導係數的理論模式及實驗 12
2-1 DLVO理論 12
2-1-1 凡德華爾吸力 13
2-1-2 電雙層斥力 14
2-2 弗氏(Fuchs)的膠體粒子聚結理論 15
2-2-1 快速聚結 16
2-2-2 慢速聚結 19
2-3 碎形模式(Fractal model) 23
2-4 李氏等人的粒子聚結理論 26
2-5 實驗配置及規劃 29
2-5-1 奈米流體配製 30
2-5-2 實驗規劃 31
第三章 聚結過程中粒子粒徑分布演變的理論及數值計算 33
3-1 統御方程式 33
3-2 布朗運動(Brownian motion) 35
3-2-1 布朗聚結(Brownian Coagulation) 36
3-3 理論整合 38
3-4 數值方法 41
3-4-1 克蘭克-尼可森法(Crank-Nicolson Scheme) 42
3-4-2 數值積分方法(Numerical Integration) 44
3-5 數值格點測試 45
第四章 結果與討論 47
4-1 粒子平均粒徑大小隨時間的演變行為 47
4-2 聚結效應對奈米流體熱傳導係數的影響 55
4-3 聚結過程中粒子粒徑分布的變化 59
4-3-1 時間演變對聚結效應的影響 61
4-3-2 初始粒數濃度對聚結效應的影響 62
4-3-3 粒子間作用力對聚結效應的影響 62
4-3-4 奈米流體溶液之離子強度對聚結效應的影響 63
第五章 結論與未來展望 65
5-1 結論 65
5-2 未來展望 67
參考文獻
dc.language.isozh-TW
dc.subjectDLVO 理論zh_TW
dc.subject奈米流體zh_TW
dc.subjectDLVO 理論zh_TW
dc.subject粒子聚結zh_TW
dc.subject熱傳導係數zh_TW
dc.subject奈米流體zh_TW
dc.subject粒子聚結zh_TW
dc.subject熱傳導係數zh_TW
dc.subjectthermal conductivityen
dc.subjectNanofluidsen
dc.subjectthermal conductivityen
dc.subjectparticle agglomerationen
dc.subjectDLVO theoryen
dc.subjectNanofluidsen
dc.subjectparticle agglomerationen
dc.subjectDLVO theoryen
dc.title奈米流體中粒子的聚結及其對熱傳導係數的影響zh_TW
dc.titleStudy of particle agglomeration in nanofluids and its effect on thermal conductivityen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳希立(Sih-Li Chen),田華忠(Hwa-Chong Tien)
dc.subject.keyword奈米流體,熱傳導係數,粒子聚結,DLVO 理論,zh_TW
dc.subject.keywordNanofluids,thermal conductivity,particle agglomeration,DLVO theory,en
dc.relation.page99
dc.identifier.doi10.6342/NTU201602043
dc.rights.note有償授權
dc.date.accepted2016-08-08
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
2.3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved