Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 環境衛生研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50038
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡詩偉(Shih-Wei Tsai)
dc.contributor.authorYa-Ling Hsuen
dc.contributor.author徐雅羚zh_TW
dc.date.accessioned2021-06-15T12:28:21Z-
dc.date.available2026-08-08
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-08-08
dc.identifier.citation(HERA), H. a. E. R. A. (2004). HERA Risk Assessment of HHCB (1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-γ-2-benzopyran and related isomers).
Banyiova, K., Necasova, A., Kohoutek, J., Justan, I., and Cupr, P. (2016). New experimental data on the human dermal absorption of Simazine and Carbendazim help to refine the assessment of human exposure. Chemosphere, 145, 148-156. doi: 10.1016/j.chemosphere.2015.11.018
Bester, K. (2009). Analysis of musk fragrances in environmental samples. J Chromatogr A, 1216(3), 470-480. doi: 10.1016/j.chroma.2008.08.093
Bronaugh, R. L., Stewart, R. F., Congdon, E. R., and Giles, A. L., Jr. (1982). Methods for in vitro percutaneous absorption studies. I. Comparison with in vivo results. Toxicol Appl Pharmacol, 62(3), 474-480.
Brunn H, B. N., Amberg-Müller J. (2004). Toxicology of synthetic musk compounds in man and animals. The Handbook of Environmental Chemistry, 3, 259-280.
Chang, S. K., and Riviere, J. E. (1991). Percutaneous absorption of parathion in vitro in porcine skin: effects of dose, temperature, humidity, and perfusate composition on absorptive flux. Fundam Appl Toxicol, 17(3), 494-504.
Chen, C., Zhou, Q., Liu, S., and Xiu, Z. (2011). Acute toxicity, biochemical and gene expression responses of the earthworm Eisenia fetida exposed to polycyclic musks. Chemosphere, 83(8), 1147-1154. doi: 10.1016/j.chemosphere.2011.01.006
Correia, P., Cruz, A., Santos, L., and Alves, A. (2013). Human dermal exposure to galaxolide from personal care products. Int J Cosmet Sci, 35(3), 299-309. doi: 10.1111/ics.12043
Davies, D. J., Ward, R. J., and Heylings, J. R. (2004). Multi-species assessment of electrical resistance as a skin integrity marker for in vitro percutaneous absorption studies. Toxicology in Vitro, 18(3), 351-358. doi: 10.1016/j.tiv.2003.10.004
Eugene Puchalski, J., Emil F. Schneider, Judith A. Cohee, El-Sayed El-Menshawy. (1987). Shampoo and bath and shower gel US4690818 A.
Garc´ıa-Jares, C., Mar´ıa Llompart, Mar´ıa Polo, Carmen Salgado, Susana Mac´ıas, and Cela, R. (2002). Optimisation of a solid-phase microextraction method for synthetic musk compounds in water. Journal of Chromatography A,, 963, 277-285.
Ghanem, A. H., Mahmoud, H., Higuchi, W. I., Liu, P. C., and Good, W. R. (1992). The effects of ethanol on the transport of lipophilic and polar permeants across hairless mouse skin - methods validation of a novel-approach. International Journal of Pharmaceutics, 78(2-3), 137-156. doi: Doi 10.1016/0378-5173(92)90365-9
Godayol, A., Besalu, E., Antico, E., and Sanchez, J. M. (2015). Monitoring of sixteen fragrance allergens and two polycyclic musks in wastewater treatment plants by solid phase microextraction coupled to gas chromatography. Chemosphere, 119, 363-370. doi: 10.1016/j.chemosphere.2014.06.072
Haruhiko Nakata, MariHinosaka, and HayatoYanagimoto. (2015). Macrocyclic-,polycyclic-,and nitro musksin cosmetics, household commodities and indoor dusts collected from Japan:Implications for their human exposure. Ecotoxicology and Environmental Safety, 111, 248-255.
HJ-C, L. C.-H. (2011). Effects of 1,3-Butylene Glycol in Transdermal Delivery and EfficacyEnhancement of Magnesium Ascobyl Phosphate. Journal of Chang Gung Institute of Technology, 15(141-149).
Homem, V., Silva, J. A., Ratola, N., Santos, L., and Alves, A. (2015). Long lasting perfume--a review of synthetic musks in WWTPs. J Environ Manage, 149, 168-192. doi: 10.1016/j.jenvman.2014.10.008
Jacobi, U., Kaiser, M., Toll, R., Mangelsdorf, S., Audring, H., Otberg, N., Sterry, W., and Lademann, J. (2007). Porcine ear skin: an in vitro model for human skin. Skin Res Technol, 13(1), 19-24. doi: 10.1111/j.1600-0846.2006.00179.x
Klimova, Z., Hojerova, J., and Berankova, M. (2015). Skin absorption and human exposure estimation of three widely discussed UV filters in sunscreens- In vitro study mimicking real-life consumer habits. Food Chem Toxicol, 83, 237-250. doi: 10.1016/j.fct.2015.06.025
Kubwabo, C., Fan, X., Rasmussen, P. E., and Wu, F. (2012). Determination of synthetic musk compounds in indoor house dust by gas chromatography–ion trap mass spectrometry. Anal Bioanal Chem, 404, 467-477.
Laura Vallecillos, F. B., Eva Pocurull. (2014). On-line coupling of solid-phase extraction to gaschromatography–mass spectrometry to determine musk fragrances in wastewater. Journal of Chromatography A, 1364, 1-11.
Lung, S. C., and Liu, C. H. (2011). High-sensitivity analysis of six synthetic musks by ultra-performance liquid chromatography-atmospheric pressure photoionization-tandem mass spectrometry. Anal Chem, 83(12), 4955-4961. doi: 10.1021/ac2006872
McGinty, D., Letizia, C. S., and Api, A. M. (2011). Fragrance material review on ethylene brassylate. Food Chem Toxicol, 49 Suppl 2, S174-182. doi: 10.1016/j.fct.2011.07.023
Nagaraju, S., Bottino, R., Wijkstrom, M., Trucco, M., and Cooper, D. K. C. (2014). Islet xenotransplantation: what is the optimal age of the islet-source pig? Xenotransplantation, 22(7-19).
OECD/OCDE. (2004). skin absorption: in vitro method. OECD/OCDE.
Peck, A. M., and Hornbuckle, K. C. (2006). Environmental sources, occurrence, and effects of synthetic musk fragrances. Journal of Environmental Monitoring, 8(9), 874-879.
Poet, T. S., and McDougal, J. N. (2002). Skin absorption and human risk assessment. Chem Biol Interact, 140(1), 19-34.
RE, B. (2001). Porcine skin flow-through diffusion cell system. Curr Protoc Toxicol, Chapter 5:Unit5 5.
Regueiro, J., Garcia-Jares, C., Llompart, M., Lamas, J. P., and Cela, R. (2009). Development of a method based on sorbent trapping followed by solid-phase microextraction for the determination of synthetic musks in indoor air. J Chromatogr A, 1216(14), 2805-2815. doi: 10.1016/j.chroma.2008.09.062
Reiner, J. L., Wong, C. M., Arcaro, K. F., and Kannan, K. (2007). Synthetic musk fragrances in human milk from the United States. Environ Sci Technol, 41(11), 3815-3820.
Ripp, J. (1996). Analytical detection limit guidance and laboratory guide for determining method detection limits. Wisconsin Department of Natural Resources Laboratory Certification Program.
Robert A. Asmus, M. T. S., Jill R. Charpentier. (2003). Stable hydroalcoholic compositions. US6534069 B1.
Sartorelli, P., Andersen, H. R., Angerer, J., Corish, J., Drexler, H., Goen, T., Griffin, P., Hotchkiss, S. A., Larese, F., Montomoli, L., Perkins, J., Schmelz, M., van de Sandt, J., and Williams, F. (2000). Percutaneous penetration studies for risk assessment. Environ Toxicol Pharmacol, 8(2), 133-152.
SCCS. (2010). Scientific committee on consumer safety. basic criteria for the in vitro assessment of dermal absorption of cosmetic ingredients. SCCS/1358/10.
Slanina, P. (2004). Risk evaluation of dietary and dermal exposure to musk fragrances. The Handbook of Environmental Chemistry, 3.
Sommer, C., and Juhl, H. (2004). Analysis of macrocyclic musks in alcohol-containing cosmetics. Deutsche Lebensmittel-Rundschau, 100(6), 224-+.
Surnmerfield, A., Meurens, F., and Ricklin, M. E. (2015). The immunology of the porcine skin and its value as a model for human skin. Molecular Immunology, 66(1), 14-21. doi: 10.1016/j.molimm.2014.10.023
Taylor, K. M., Weisskopf, M., and Shine, J. (2014). Human exposure to nitro musks and the evaluation of their potential toxicity: an overview. Environmental Health, 13. doi: Artn 14
10.1186/1476-069x-13-14
Turner, N. J., Pezzone, D., and Badylak, S. F. (2015). Regional variations in the histology of porcine skin. Tissue Eng Part C Methods, 21(4), 373-384. doi: 10.1089/ten.TEC.2014.0246
USEPA. (2004). Risk assessment guidance for superfund (RAGS). In: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Interim. 1.
Vallecillos, L., Borrull, F., and Pocurull, E. (2015). Recent approaches for the determination of synthetic musk fragrances in environmental samples. Trac-Trends in Analytical Chemistry, 72, 80-92. doi: 10.1016/j.trac.2015.03.022
Wang, I. T., Cheng, S. F., and Tsai, S. W. (2014). Determinations of airborne synthetic musks by polyurethane foam coupled with triple quadrupole gas chromatography tandem mass spectrometer. J Chromatogr A, 1330, 61-68. doi: 10.1016/j.chroma.2014.01.011
Wang, S. M., Chang, H. Y., Tsai, J. C., Lin, W. C., Shih, T. S., and Tsai, P. J. (2009). Skin penetrating abilities and reservoir effects of neat DMF and DMF/water mixtures. Sci Total Environ, 407(19), 5229-5234. doi: 10.1016/j.scitotenv.2009.06.035
Wei-ju Tseng, S.-W. T. (2015). Determinations of synthetic musks in personal care products by solid-phasae microextraction.
Wollenberger, L., Breitholtz, M., Ole Kusk, K., and Bengtsson, B. E. (2003). Inhibition of larval development of the marine copepod Acartia tonsa by four synthetic musk substances. Sci Total Environ, 305(1-3), 53-64. doi: 10.1016/S0048-9697(02)00471-0
Xiaolan Zhang, Y. J., Li Ma, Jing Zhou, Xiangming Fang,Xinyu Zhang, Yingxin Yua. (2015). Occurrence and transport of synthetic musks in paired maternalblood, umbilical cord blood, and breast milk. International Journal of Hygiene and Environmental Health, 218, 99-106.
Yamagishi, T., Miyazaki, T., Horii, S., and Akiyama, K. (1983). Synthetic musk residues in biota and water from Tama River and Tokyo Bay (Japan). Arch Environ Contam Toxicol, 12(1), 83-89.
Zhouyao Zhang, and Pawliszyn, J. (1993). Headspace Solid-Phase Microextraction. Anal. Chem., 65(1843-1852).
張聰洲, and 陳啟銘. (2006). 豬場衛生管理手冊. 台灣動物科技研究所.
潘文涵, and 杜素豪. (2008). 民國93-97 年度國民營養健康狀況變遷調查. 中央研究院人文社會科學研究中心.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50038-
dc.description.abstract近年來健康意識日漸抬頭,然而過去數十年來隨著化學合成工業的發展,有許多非天然物質被使用在日常生活中,例如:人造麝香就是其中一項。根據文獻指出,自1992年到2004年人造麝香的市場需求量快速上升,而其中以多環麝香以及硝基麝香的使用最為普遍。不過,隨著健康意識的抬頭,陸續有許多研究證實部分人造麝香對人體潛在不良的健康效應,例如:硝基麝香經由動物實驗發現可能產生急毒性以及慢性毒性,另外也可能導致突變以及相關的基因毒效應。多環麝香的暴露則可能造成陸生動物體內的氧化壓力上升;除此之外,人造麝香也被證實為內分泌干擾物。
隨著大量使用,人造麝香在環境中廣為流佈,包括:空氣、水、土壤以及動物體內等都可被檢測出,而近年來甚至在人體樣本中也可發現其存在。過去文獻指出,呼吸、攝食以及皮膚暴露等都可能是人造麝香進入人體的途徑,其中又以皮膚接觸為最主要,然而目前並沒有足夠且確切的暴露資料;例如:相關研究多是以假設的10% 滲透數據做為依據進行相關計算。
為了獲得符合實際狀況的人工麝香經皮膚吸收資訊,本研究利用經皮吸收擴散槽搭配固相微萃取(Solid-phase microextraction, SPME)技術以及三重四極桿氣相層析串聯式質譜儀進行相關的皮膚滲透模擬與分析。本研究選擇市售個人保健用品(Personal care products; PCPs)(包括:乳液及沐浴乳作等)為樣本,進行相關實驗以探討基質以及待測物濃度對皮膚滲透的影響。實驗中,以豬皮為替代皮膚,暴露腔的接收液則為添加10%乙醇的生理緩衝液;每次實驗進行8小時,前四個小時中每半個小時進行一次收樣,後四個小時則是每小時收樣一次,最後再將8小時的收樣樣本進行分析,進而得到滲透曲線及滲透速率等皮膚暴露相關資料。
本研究發現,佳樂麝香(HHCB)、粉檀麝香(AHMI)以及吐納麝香(AHTN)確實可以經由皮膚暴露而滲透。當人造麝香濃度越高時,滲透通量也會越高,而沐浴乳的滲透參數數值(通量及滲透係數)則都高於乳液;其中,乳液的滲透係數範圍為10-10 -10-8 cm/hr,而沐浴乳的滲透係數範圍為10-7 -10-6 cm/hr。人造麝香在兩種產品的滲透分佈現象也不相同;乳液中0.001-0.4%會滲透、沐浴乳3-12%會滲透。不過,不論人造麝香存在於那種基質,其延遲時間都小於30分鐘(代表其滲透速度非常快)。
本研究發現不同人造麝香的皮膚滲透現象會受產品基質以及待測物濃度所影響,因此進行皮膚吸收的暴露評估時不應只簡單利用文獻所假設的 10%吸收率進行計算。另一方面,透過本研究所使用的體外動態皮膚暴露系統(Vertical Diffusion Cell),則可以獲得實際的暴露參數。
zh_TW
dc.description.abstractObjective: Many personal care products (PCPs), which are made from various ingredients, are widely used in our daily life. To enhance the odor or to change the smell of the products, synthetic musks have been added into PCPs for decades. For example, previous studies pointed out that the demand of synthetic musks increased rapidly from 1992-2004. However, some of the synthetic musks have been confirmed that they can cause health problems, such as allergy, cancer, acute toxicity, etc. In addition, synthetic musks also belong to the endocrine disrupting compounds (EDCs). The most common way to expose synthetic musks is dermal contact. However, only hypothetical absorption rate was available to conduct the assessment. Hence, to reduce the uncertainty, the aim of this study was to validate the permeation parameters (eg., permeation coefficient(Kp), lag time and flux) of synthetic musks by dermal exposure.
Methods: Two kinds of PCPs, including lotion and shower bath gel, were tested in this study. In addition to sample matrix, the effect of concentration on permeation was also examined in this study. The Hanson Vertical Diffusion Cell (VDC), which was an in vitro method, was applied to simulate the conditions for skin contact. For sample analysis, solid-phase microextraction (SPME) coupled with GC/MS/MS was performed. Porcine skin was used as the substituted skin. PBS was selected as the receptor media. For a set of the experiment, the test was conducted for 8 hours. During the first 4 hours, the samples were collected every half hour. For the followings, the samples were taken periodically with the interval of an hour.
Results: The SPME procedure coupled with GC/MS/MS analysis for the determination of synthetic musks in PBS solution was established in this study. It was observed that synthetic musks can permeate through skin via dermal exposure. The permeabilities, including flux and Kp, for synthetic musks (e.g., AHTN and HHCB) through skin were different for PCPs with various sample matrixes. Compared with lotion, the flux and Kp for shower bath gel was higher, which means the synthetic musks in shower bath permeated through skin easier. In addition, the permeation coefficients through skin were 10-10 -10-8 cm/hr and 10-7 -10-6 cm/hr for synthetic musks contained in lotion and shower bath gel, respectively. It was also observed that around 0.001~0.4% and 3~12% of the synthetic musks in lotion and shower bath gel, respectively will permeate through skin. Moreover, the concentrations of synthetic musks in PCPs affected the permeability as well. As the concentration increased, the flux was higher no matter which kind of sample matrix was tested. Besides, the Kp (permeation coefficient) also depended on the sample matrix and the concentrations of synthetic musks. It was observed that the lag time for AHTN, HHCB, and AHMI were all below 0.5 hour, which meaned the synthetic musks permeated shortly once the PCPs were applied on the skin.
Conclusion: This research demonstrated that the hypothetical parameters for skin absorption were not consistent with what were found the in vitro testing system. To reduce uncertainty when assessing dermal exposure in the future, the using of Vertical Diffusion Cell will have great benefits apparently.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:28:21Z (GMT). No. of bitstreams: 1
ntu-105-R03844004-1.pdf: 2186750 bytes, checksum: a4826f075e8385d9f6b850c4f9b35c52 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents中文摘要 ii
Abstract iv
Chapter 1 Introduction 1
1.1 Research background 1
1.2 Objective 2
1.3 Synthetic musks 2
1.3.1 Property 2
1.3.2 Development 3
1.3.3 Environmental fate 5
1.3.4 Health effect 6
1.3.5 Exposure routes 7
1.3.6 Regulation 7
1.4 SPME technique 8
1.4.1 SPME principle 9
1.4.2 Parameters 10
1.5 Dermal exposure test 10
1.5.1 Percutaneous devices 11
1.5.2 Skin 12
1.5.3 Receptor media 14
1.5.4 Temperature 14
1.5.6 Flow rate 14
Chapter 2 Material and Method 16
2.1 Study flow chart 16
2.2 Reagents and standards 17
2.3 Skin 17
2.4 Mechanism 18
2.5 Person care products collection and preparation 18
2.6 Percutaneous devices analysis 19
2.7 SPME extraction 20
2.8 Instrument analysis 20
2.9 Method validation 21
2.10 Data analysis 22
2.11 Dermal exposure assessment 23
Chapter 3 Results 25
3.1 GC-MS/MS analysis 25
3.2 Ingredient for receptor media 25
3.3 Desorption efficiency for pig skin, tape, and cotton 25
3.4 Concentrations of synthetic musks in personal care products 26
3.5 Background concentration (system blank) of synthetic musks in porcine skin 26
3.6 The timeline curve of skin permeation 27
3.7 Distribution of synthetic musks 28
3.9 Dermal exposure assessment 28
Chapter 4 Discussions 30
4.1 Desorption efficiency for pig skin, tape, and cotton 30
4.2 Background concentration (system blank) of synthetic musks 30
4.3 Distribution of synthetic musks 30
4.4 Recovery rate 31
4.5 Dermal exposure assessment 31
4.6 Limitation 33
Conclusions 35
References 36
dc.language.isoen
dc.subject滲透曲線zh_TW
dc.subject人造麝香zh_TW
dc.subject皮膚暴露zh_TW
dc.subject個人保健用品zh_TW
dc.subject固相微萃取zh_TW
dc.subjectpersonal care productsen
dc.subjectpermeation curveen
dc.subjectSynthetic musksen
dc.subjectSPMEen
dc.subjectdermal exposure assessmenten
dc.title利用動態經皮暴露腔探討人造麝香的皮膚滲透特性zh_TW
dc.titleDetermining the Permeation Characteristics of Dermal Exposure to Synthetic Musks from Personal Care Products by Using Vertical Diffusion Cellen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林嘉明(Jia-Ming Lin),陳美蓮(Mei-Lien Chen)
dc.subject.keyword人造麝香,皮膚暴露,個人保健用品,固相微萃取,滲透曲線,zh_TW
dc.subject.keywordSynthetic musks,personal care products,dermal exposure assessment,permeation curve,SPME,en
dc.relation.page62
dc.identifier.doi10.6342/NTU201602070
dc.rights.note有償授權
dc.date.accepted2016-08-08
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept環境衛生研究所zh_TW
顯示於系所單位:環境衛生研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
2.14 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved