Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50037
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陶秘華(Mi-Hua Tao)
dc.contributor.authorI-Hsuan Linen
dc.contributor.author林宜萱zh_TW
dc.date.accessioned2021-06-15T12:28:19Z-
dc.date.available2021-07-31
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-08-08
dc.identifier.citation第五章 參考文獻
1. Bosma, G.C., R.P. Custer, and M.J. Bosma, A severe combined immunodeficiency mutation in the mouse. Nature, 1983. 301(5900): p. 527-30.
2. Takenaka, K., et al., Polymorphism in Sirpa modulates engraftment of human hematopoietic stem cells. Nat Immunol, 2007. 8(12): p. 1313-23.
3. Takizawa, H. and M.G. Manz, Macrophage tolerance: CD47-SIRP-alpha-mediated signals matter. Nat Immunol, 2007. 8(12): p. 1287-9.
4. Shultz, L.D., et al., Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol, 1995. 154(1): p. 180-91.
5. Hesselton, R.M., et al., High levels of human peripheral blood mononuclear cell engraftment and enhanced susceptibility to human immunodeficiency virus type 1 infection in NOD/LtSz-scid/scid mice. J Infect Dis, 1995. 172(4): p. 974-82.
6. Ito, M., et al., NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood, 2002. 100(9): p. 3175-82.
7. Ishikawa, F., et al., Development of functional human blood and immune systems in NOD/SCID/IL2 receptor {gamma} chain(null) mice. Blood, 2005. 106(5): p. 1565-73.
8. Hiramatsu, H., et al., Complete reconstitution of human lymphocytes from cord blood CD34+ cells using the NOD/SCID/gammacnull mice model. Blood, 2003. 102(3): p. 873-80.
9. Sugamura, K., et al., The interleukin-2 receptor gamma chain: its role in the multiple cytokine receptor complexes and T cell development in XSCID. Annu Rev Immunol, 1996. 14: p. 179-205.
10. Cao, X., et al., Defective lymphoid development in mice lacking expression of the common cytokine receptor gamma chain. Immunity, 1995. 2(3): p. 223-38.
11. DiSanto, J.P., et al., Lymphoid development in mice with a targeted deletion of the interleukin 2 receptor gamma chain. Proc Natl Acad Sci U S A, 1995. 92(2): p. 377-81.
12. Ohbo, K., et al., Modulation of hematopoiesis in mice with a truncated mutant of the interleukin-2 receptor gamma chain. Blood, 1996. 87(3): p. 956-67.
13. Kondo, M., et al., Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu Rev Immunol, 2003. 21: p. 759-806.
14. Ishii, M., et al., Development of a high-resolution purification method for precise functional characterization of primitive human cord blood-derived CD34+-negative SCID-repopulating cells. Exp Hematol, 2011. 39(2): p. 203-213 e1.
15. Doulatov, S., et al., Hematopoiesis: a human perspective. Cell Stem Cell, 2012. 10(2): p. 120-36.
16. Lepus, C.M., et al., Comparison of human fetal liver, umbilical cord blood, and adult blood hematopoietic stem cell engraftment in NOD-scid/gammac-/-, Balb/c-Rag1-/-gammac-/-, and C.B-17-scid/bg immunodeficient mice. Hum Immunol, 2009. 70(10): p. 790-802.
17. Rongvaux, A., et al., Development and function of human innate immune cells in a humanized mouse model. Nat Biotechnol, 2014. 32(4): p. 364-72.
18. Baenziger, S., et al., Disseminated and sustained HIV infection in CD34+ cord blood cell-transplanted Rag2-/-gamma c-/- mice. Proc Natl Acad Sci U S A, 2006. 103(43): p. 15951-6.
19. Zhang, L., G.I. Kovalev, and L. Su, HIV-1 infection and pathogenesis in a novel humanized mouse model. Blood, 2007. 109(7): p. 2978-81.
20. Jaiswal, S., et al., Dengue virus infection and virus-specific HLA-A2 restricted immune responses in humanized NOD-scid IL2rgammanull mice. PLoS One, 2009. 4(10): p. e7251.
21. Melkus, M.W., et al., Humanized mice mount specific adaptive and innate immune responses to EBV and TSST-1. Nat Med, 2006. 12(11): p. 1316-22.
22. Carballido, J.M., et al., Generation of primary antigen-specific human T- and B-cell responses in immunocompetent SCID-hu mice. Nat Med, 2000. 6(1): p. 103-6.
23. Legrand, N., K. Weijer, and H. Spits, Experimental models to study development and function of the human immune system in vivo. J Immunol, 2006. 176(4): p. 2053-8.
24. Shultz, L.D., F. Ishikawa, and D.L. Greiner, Humanized mice in translational biomedical research. Nat Rev Immunol, 2007. 7(2): p. 118-30.
25. Becker, P.D., et al., Generation of human antigen-specific monoclonal IgM antibodies using vaccinated 'human immune system' mice. PLoS One, 2010. 5(10).
26. Rajesh, D., et al., Th1 and Th17 immunocompetence in humanized NOD/SCID/IL2rgammanull mice. Hum Immunol, 2010. 71(6): p. 551-9.
27. Engering, A., et al., The dendritic cell-specific adhesion receptor DC-SIGN internalizes antigen for presentation to T cells. J Immunol, 2002. 168(5): p. 2118-26.
28. Gijzen, K., et al., Relevance of DC-SIGN in DC-induced T cell proliferation. J Leukoc Biol, 2007. 81(3): p. 729-40.
29. Traggiai, E., et al., Development of a human adaptive immune system in cord blood cell-transplanted mice. Science, 2004. 304(5667): p. 104-7.
30. Chen, Q., M. Khoury, and J. Chen, Expression of human cytokines dramatically improves reconstitution of specific human-blood lineage cells in humanized mice. Proc Natl Acad Sci U S A, 2009. 106(51): p. 21783-8.
31. Watanabe, Y., et al., The analysis of the functions of human B and T cells in humanized NOD/shi-scid/gammac(null) (NOG) mice (hu-HSC NOG mice). Int Immunol, 2009. 21(7): p. 843-58.
32. Rongvaux, A., et al., Human hemato-lymphoid system mice: current use and future potential for medicine. Annu Rev Immunol, 2013. 31: p. 635-74.
33. Wege, A.K., et al., Functional and phenotypic characterization of the humanized BLT mouse model. Curr Top Microbiol Immunol, 2008. 324: p. 149-65.
34. Lan, P., et al., Reconstitution of a functional human immune system in immunodeficient mice through combined human fetal thymus/liver and CD34+ cell transplantation. Blood, 2006. 108(2): p. 487-92.
35. Covassin, L., et al., Human immune system development and survival of non-obese diabetic (NOD)-scid IL2rgamma(null) (NSG) mice engrafted with human thymus and autologous haematopoietic stem cells. Clin Exp Immunol, 2013. 174(3): p. 372-88.
36. Zincarelli, C., et al., Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Mol Ther, 2008. 16(6): p. 1073-80.
37. Wang, Z., et al., Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart. Nat Biotechnol, 2005. 23(3): p. 321-8.
38. Matsumura, T., et al., Functional CD5+ B cells develop predominantly in the spleen of NOD/SCID/gammac(null) (NOG) mice transplanted either with human umbilical cord blood, bone marrow, or mobilized peripheral blood CD34+ cells. Exp Hematol, 2003. 31(9): p. 789-97.
39. Lai, M.J., et al., Distributions of human leukocyte antigen-A, -B, and -DRB1 alleles and haplotypes based on 46,915 Taiwanese donors. Hum Immunol, 2010. 71(8): p. 777-82.
40. Huang, J., et al., An AAV vector-mediated gene delivery approach facilitates reconstitution of functional human CD8+ T cells in mice. PLoS One, 2014. 9(2): p. e88205.
41. Wang, Z., et al., Rapid and highly efficient transduction by double-stranded adeno-associated virus vectors in vitro and in vivo. Gene therapy, 2003. 10.
42. Wilson, A. and A. Trumpp, Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol, 2006. 6(2): p. 93-106.
43. Czechowicz, A., et al., Efficient transplantation via antibody-based clearance of hematopoietic stem cell niches. Science, 2007. 318(5854): p. 1296-9.
44. Hayakawa, J., et al., Busulfan produces efficient human cell engraftment in NOD/LtSz-Scid IL2Rgamma(null) mice. Stem Cells, 2009. 27(1): p. 175-82.
45. Nakahata, T. and M. Ogawa, Hemopoietic colony-forming cells in umbilical cord blood with extensive capability to generate mono- and multipotential hemopoietic progenitors. J Clin Invest, 1982. 70(6): p. 1324-8.
46. Manz, M.G., Human-hemato-lymphoid-system mice: opportunities and challenges. Immunity, 2007. 26(5): p. 537-41.
47. Bueno, C., et al., Intra-bone marrow transplantation of human CD34+(+) cells into NOD/LtSz-scid IL-2rgamma(null) mice permits multilineage engraftment without previous irradiation. Cytotherapy, 2010. 12(1): p. 45-9.
48. Gimeno, R., et al., Monitoring the effect of gene silencing by RNA interference in human CD34+ cells injected into newborn RAG2-/- gammac-/- mice: functional inactivation of p53 in developing T cells. Blood, 2004. 104(13): p. 3886-93.
49. Pearson, T., D.L. Greiner, and L.D. Shultz, Creation of 'humanized' mice to study human immunity. Curr Protoc Immunol, 2008. Chapter 15: p. Unit 15 21.
50. Seung, E. and A.M. Tager, Humoral immunity in humanized mice: a work in progress. J Infect Dis, 2013. 208 Suppl 2: p. S155-9.
51. Kaushansky, K., Historical review: megakaryopoiesis and thrombopoiesis. Blood, 2008. 111(3): p. 981-6.
52. Watanabe, S., et al., Humanized NOD/SCID/IL2Rgamma(null) mice transplanted with hematopoietic stem cells under nonmyeloablative conditions show prolonged life spans and allow detailed analysis of human immunodeficiency virus type 1 pathogenesis. J Virol, 2007. 81(23): p. 13259-64.
53. Brehm, M.A., et al., Engraftment of human HSCs in nonirradiated newborn NOD-scid IL2rgamma null mice is enhanced by transgenic expression of membrane-bound human SCF. Blood, 2012. 119(12): p. 2778-88.
54. Chen, Q., et al., GM-CSF and IL-4 stimulate antibody responses in humanized mice by promoting T, B, and dendritic cell maturation. J Immunol, 2012. 189(11): p. 5223-9.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50037-
dc.description.abstract帶有人類免疫系統(Human immune system ,HIS)的小鼠,主要透過移植人類造血幹細胞至免疫缺陷小鼠來建立,為研究人類免疫系統在體內功能的重要工具;然而,如何在HIS小鼠建立具有功能的人類後天性免疫系統,依然存在許多挑戰。細胞激素在免疫系統的發展與功能上扮演重要的角色,因此HIS小鼠後天性免疫的缺陷,可能是因為小鼠細胞激素不能有效的和人類細胞受器結合所致。除此之外,HIS小鼠T細胞功能的缺失,可能與人類T細胞在小鼠胸腺,是接受小鼠主要組織相容性複合物(major histocompatibility complex, MHC)教育而非人類白血球抗原(human leukocyte antigen, HLA)有關,這些由小鼠MHC教育出的T細胞,可能失去和人類抗原呈現細胞上之HLA結合的能力,導致無法有效的被活化。因此,我們認為在建立HIS小鼠時,額外提供促進T細胞和B細胞發育的人類細胞激素與HLA,或許能幫助建立具有功能的後天性免疫系統。
在本篇研究的第一部份,我們成功建立了從臍帶血分離人類CD34+造血幹細胞的方法,當這些造血幹細胞移植到放射線照射過的四週齡NSG免疫缺陷小鼠(NOD.Cg‑Prkdcscid Il2rgtm1Wjl),或是沒有照射過放射線的NSG新生鼠,皆可於移植後約一個月,在小鼠周邊血中測得一定比例的CD45+人類白血球細胞,且所占比例隨時間而增多;分析這些HIS小鼠的免疫器官,也可在脾臟、肝臟、胸腺與骨髓中看到成熟的CD4+及CD8+T 細胞。然而,我們卻發現在造血幹細胞移植後約兩個月,有照射過放射線的小鼠會變得虛弱甚至死亡,分析其血液組成後,判斷死亡原因可能與放射線照射,造成紅血球及血小板數量大量減少有關;由於照射放射線會減短小鼠壽命,不利於進行需要長時間觀測的實驗,因此,我們決定之後的實驗都以沒有照射放射線的新生鼠作為建立HIS小鼠的移植宿主,與研究人類後天免疫系統的對象。
為了促進HIS小鼠的後天性免疫系統,我們利用腺相關病毒為載體,表現人類細胞激素(GM-CSF, IL-7, BLyS 和 IL-4)和人類第一型及第二型HLA蛋白。體內與體外的實驗結果顯示,這些AAV載體確實可表現所攜帶的人類細胞激素和HLA基因。由於T細胞必須在胸腺表現接受HLA的教育,因此我們將AAV/HLA直接以胸腺注射的方式送入,而表達細胞激素的AAV則以腹腔注射,使之在小鼠全身表達細胞激素。我們比較只有移植造血幹細胞的HIS小鼠,與有施打表現HLA和細胞激素的AAV之HIS-AAV小鼠,其血液中CD45+人類白血球細胞比例與免疫球蛋白的含量。實驗總共進行了三次,但結果並不一致。其中兩次實驗的結果,顯示HIS-AAV小鼠較早產生CD45+人類白血球,其所占比例也比沒有施打細胞激素和的HIS小鼠高,此外,在其中一次的實驗中HIS-AAV小鼠可測到高量的人類IgG免疫球蛋白,而HIS小鼠完全測不到人類免疫球蛋白。但是,另外一次的實驗卻沒能再現這些結果,我們正努力找出造成實驗結果不一致的原因,會在日後繼續尋找促進HIS小鼠產生具有功能的後天性免疫系統的辦法。
zh_TW
dc.description.abstractHuman immune system (HIS) mice, generated by transplanting human hematopoietic stem cells to immunodeficient mice, are a powerful tool to study human immune functions in vivo. However, how to generate HIS mice containing functional adaptive immunity remains challenges. It is well known that cytokines play a critical role in directing immune cell development and functions. The defect in adaptive immunity in current HIS mice may be due to the limited cross-reactivity between mouse cytokines and human receptors. Another potential cause of T cell impairment in HIS mice is that human T cells are educated by mouse major histocompatibility complex (MHC) in the thymus of HIS mice, which may result in their T cell receptors not being able to recognize human antigen-presenting cells that express human leukocyte antigen (HLA). We hypothesized that by providing HIS mice with a combination of human cytokines that are important for T and B cell development and human HLA molecules, we may be able to generate HIS mice with improved adaptive immunity.
In the first part of this study, we established protocols to successfully isolate CD34+ hematopoietic stem cells from the umbilical cord blood. Transplantation of these hematopoietic stem cells into irradiated young adult or neonatal immunodeficient NOD.Cg‑Prkdcscid Il2rgtm1Wjl (NSG)mice led to significant amounts of human CD45+ leukocyte cells in the blood and the percentage of these human cells increased with time. Mature human CD4+ T cells and CD8+ T cells were also found in the spleen, liver, bone marrow and thymus. However, these HIS mice became ill and died within two months after transplantation. The cause of death was likely due to radiation which resulted in extremely low levels of red blood cells and platelets in these mice. Because radiation pretreatment will shorten mice lifespan, which is unfavorable for long term experiment observation. Therefore, we adopted a protocol which used neonatal mice without radiation pretreatment for generating HIS mice. This HIS neonatal mice were successfully generated and we took it as our modal for investigate human adaptive immune system in the later experiment.
To improve the adaptive immunity in HIS mice, we used adeno-associated viral (AAV) vectors to deliver human cytokines (GM-CSF, IL-7, BLyS, and IL-4) and both class I and class II HLA molecules. In vitro and in vivo assays demonstrated that these AAV vectors were able to express their corresponding cytokines and HLA proteins. Since expression of HLA within the thymus is essential for human T cells to be properly educated, the AAV/HLA vectors were directly injected into the thymus. AAV vectors that express cytokines were intraperitoneally injected which allows cytokine expression systemically. We compared the percentage of human CD45+ cells and the total human immunoglobulin levels in the blood of the HIS mice with and without transduction of AAV vectors expressing cytokines and HLAs. So far, three experiments have been performed with inconsistent results. In two experiment, AAV-cytokine and HLA transduced HIS mice showed much higher percentage of human CD45+ cells as compared with HIS mice without AAV transduction. Analysis of serum immunoglobulin levels also showed high titers of human IgG levels in one experiment, while no human immunoglobulins can be detected in HIS mice without AAV transduction. Unfortunately, these results can not be reproduced in another experiment. We are currently clarifying the possible causes of these inconsistent results and will continue to work on generating HIS mice with an improved adaptive immunity.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:28:19Z (GMT). No. of bitstreams: 1
ntu-105-R03424010-1.pdf: 8659476 bytes, checksum: cd70c836cc29840ba3c883f79cfd8a4d (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents目錄
口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract v
目錄 viii
圖目錄 x
表目錄 xi
第一章 緒論 1
第一節 人類免疫系統老鼠 1
1-1免疫缺陷鼠 1
1-2移植人類造血幹細胞 2
1-3人類免疫小鼠的應用 3
第二節 人類免疫系統老鼠的限制 3
2-1 B 細胞抗體反應不良及成因 3
2-2T 細胞功能不良與成因 4
第三節 人類免疫系統小鼠的改良方法 5
第四節 腺相關病毒 5
第五節 研究動機與實驗目的 6
第二章 材料與方法 7
第一節 製作腺相關病毒質體 7
第二節 真核細胞轉染 7
第三節 包裝腺相關病毒製備 7
第四節 純化腺相關病毒 8
第五節 分離臍帶血單核細胞 8
第六節 以磁珠純化CD34+ 細胞 9
第七節 動物 9
第八節 建立人類免疫系統小鼠 9
第九節 分離肝臟、脾臟、骨髓及胸腺之白血球 9
第十節 流式細胞儀分析 10
第十一節 免疫化學組織染色 10
第十二節 統計 11
第三章 實驗結果 12
第一節 製作腺相關病毒質體表現人類細胞激素或人類白血球抗原基因 12
1-1製作腺相關病毒質體 12
1-2腺相關病毒質體在體外表現人類細胞激素 13
1-3腺相關病毒質體在體外表現第一型人類白血球抗原 13
1-4腺相關病毒質體在體外表現第二型人類白血球抗原 14
第二節 以腺相關病毒於小鼠體內表現人類細胞激素或人類白血球抗原基因 14
2-1包裝腺相關病毒 14
2-2腺相關病毒在小鼠體內表現人類細胞激素 15
2-3腺相關病毒在小鼠胸腺表現螢光蛋白 15
第三節 放射線照射劑量對小鼠存活率之影響 16
第四節 臍帶血造血幹細胞 16
4-1 分離與分析臍帶血造血幹細胞 17
4-2 鑑定臍帶血造血幹細胞人類白血球抗原之基因型 17
第五節 人類免疫系統之小鼠模式 18
5-1人類免疫系統小鼠的血液白血球組成 18
5-2人類免疫系統小鼠各器官的白血球數目 19
5-3探討移植造血幹細胞數量對建立人類免疫系統的影響 20
5-4放射線與建立人類免疫系統的對小鼠之影響 21
第六節 在新生NSG鼠建立人類免疫系統 22
6-1在新生NSG鼠建立人類免疫系統 22
6-2探討人類細胞激素及白細胞抗原對建立人類免疫系統的影響─第一次實驗結果 23
6-3探討人類細胞激素及白細胞抗原對HIS新生鼠影響─第二次實驗結果 24
6-4探討人類細胞激素及白細胞抗原對HIS新生鼠影響─第三次實驗結果 25
第四章 討論 27
第一節 建立人類免疫系統小鼠 27
第二節 人類細胞激素及白血球抗原對新生鼠的影響 28
第五章 參考文獻 30

圖目錄
圖一、表達人類白血球抗原和人類細胞激素之腺相關病毒質體 35
圖二、腺相關病毒質體在細胞株中表現人類細胞激素 36
圖三、腺相關病毒質體在細胞株中表現第一型人類白血球抗原 37
圖四、腺相關病毒質體在細胞株中表現第二型人類白血球抗原 38
圖五、腺相關病毒在小鼠體中表現人類細胞激素 39
圖六、腺相關病毒在胸腺表現螢光蛋白 40
圖七、放射線劑量對NSG小鼠生存率的影響 41
圖八、臍帶血造血幹細胞的分離及純化 42
圖九、造血幹細胞在NSG小鼠上分化出人類白血球 44
圖十、建立人類免疫系統對NSG小鼠各器官免疫細胞數量之影響 45
圖十一、免疫細胞浸潤於人類免疫系統NSG小鼠肝臟 46
圖十二、移植造血幹細胞劑量對小鼠血液中人類白血球細胞比例的影響 47
圖十三、放射線照射以及建立人類免疫系統對NSG小鼠血液組成之影響 48
圖十四、腺相關病毒表現人類白血球抗原與細胞激素對HIS新生鼠的影響 49
圖十五、測量人類免疫系統新生小鼠之人類免疫球蛋白 50
圖十六、腺相關病毒表現人類白血球抗原與細胞激素對HIS新生鼠的影響之二 51
圖十七、腺相關病毒表現人類白血球抗原與細胞激素對HIS新生鼠的影響之三 52
表目錄
表一、人類白細胞抗原在台灣人出現之頻率 53
表二、人類細胞激素之功能與小鼠細胞激素之相似程度 54
表三、人類白血球抗原引子統整 55
表四、人類細胞激素引子統整 56
dc.language.isozh-TW
dc.title促進人類免疫系統小鼠模式之後天免疫zh_TW
dc.titleImprovement of adaptive immunity in human immune system (HIS) miceen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林淑華(Shu-Wha),胡忠怡(Chung-Yi Hu)
dc.subject.keyword人類免疫,小鼠模式,人類免疫系統小鼠模式,後天免疫,腺相關病毒,zh_TW
dc.subject.keywordHuman Immunity,mice model,human immune system mice model,adeno-associated virus,adaptive immunity,en
dc.relation.page56
dc.identifier.doi10.6342/NTU201602073
dc.rights.note有償授權
dc.date.accepted2016-08-08
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
8.46 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved