請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50016
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳炳煇(Ping-Hei Chen) | |
dc.contributor.author | Meng-Ru Lee | en |
dc.contributor.author | 李孟儒 | zh_TW |
dc.date.accessioned | 2021-06-15T12:27:50Z | - |
dc.date.available | 2021-08-24 | |
dc.date.copyright | 2016-08-24 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-08-08 | |
dc.identifier.citation | [1] J. H. Lienhard IV and J. H. Lienhard V, 'A Heat Transfer Textbook,' Phlogiston Press, 2008.
[2] S. Nukiyama, 'Maximum and minimum values of heat Q transmitted from metal to boiling water under atmospheric pressure,' Journal of the Japan Society of Mechanical Engineers, vol. 37, pp. 367-374, 1934. [3] W. Duangthongsuk, T. Yiamsawasd, A. S. Dalkilic, and S. Wongwises, 'Pool-boiling heat transfer characteristics of Al2O3-water nanofluids on a horizontal cylindrical heating surface,' Current Nanoscience, vol. 9, pp. 56-60, Feb 2013. [4] J. T. Cieśliński and T. Z. Kaczmarczyk, 'Pool boiling of water–Al2O3 and water–Cu nanofluids outside porous coated tubes,' Heat Transfer Engineering, vol. 36, pp. 553-563, 2014. [5] S. K. Das, N. Putra, and W. Roetzel, 'Pool boiling characteristics of nano-fluids,' International Journal of Heat and Mass Transfer, vol. 46, pp. 851-862, Feb 2003. [6] Y. Hu, S. Zhang, X. Li, and S. Wang, 'Heat transfer enhancement mechanism of pool boiling with self-rewetting fluid,' International Journal of Heat and Mass Transfer, vol. 79, pp. 309-313, 2014. [7] S. M. You, J. H. Kim, and K. H. Kim, 'Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer,' Applied Physics Letters, vol. 83, pp. 3374-3376, Oct 20 2003. [8] C. K. Huang, C. W. Lee, and C. K. Wang, 'Boiling enhancement by TiO2 nanoparticle deposition,' International Journal of Heat and Mass Transfer, vol. 54, pp. 4895-4903, Nov 2011. [9] H. T. Phan, N. Caney, P. Marty, S. Colasson, and J. Gavillet, 'Surface wettability control by nanocoating: The effects on pool boiling heat transfer and nucleation mechanism,' International Journal of Heat and Mass Transfer, vol. 52, pp. 5459-5471, Nov 2009. [10] Y. Takata, S. Hidaka, M. Masuda, and T. Ito, 'Pool boiling on a superhydrophilic surface,' International Journal of Energy Research, vol. 27, pp. 111-119, Feb 2003. [11] B. Bourdon, P. Di Marco, R. Rioboo, M. Marengo, and J. De Coninck, 'Enhancing the onset of pool boiling by wettability modification on nanometrically smooth surfaces,' International Communications in Heat and Mass Transfer, vol. 45, pp. 11-15, Jul 2013. [12] B. Bourdon, E. Bertrand, P. Di Marco, M. Marengo, R. Rioboo, and J. De Coninck, 'Wettability influence on the onset temperature of pool boiling: Experimental evidence onto ultra-smooth surfaces,' Adv Colloid Interface Sci, vol. 221, pp. 34-40, Jul 2015. [13] A. R. Betz, J. Xu, H. H. Qiu, and D. Attinger, 'Do surfaces with mixed hydrophilic and hydrophobic areas enhance pool boiling?,' Applied Physics Letters, vol. 97, Oct 4 2010. [14] H. Jo, H. S. Ahn, S. Kane, and M. H. Kim, 'A study of nucleate boiling heat transfer on hydrophilic, hydrophobic and heterogeneous wetting surfaces,' International Journal of Heat and Mass Transfer, vol. 54, pp. 5643-5652, Dec 2011. [15] C. C. Hsu, T. W. Su, and P. H. Chen, 'Pool boiling of nanoparticle-modified surface with interlaced wettability,' Nanoscale Research Letters, vol. 7, May 18 2012. [16] K. H. Chu, R. Enright, and E. N. Wang, 'Structured surfaces for enhanced pool boiling heat transfer,' Applied Physics Letters, vol. 100, Jun 11 2012. [17] K. H. Chu, Y. Soo Joung, R. Enright, C. R. Buie, and E. N. Wang, 'Hierarchically structured surfaces for boiling critical heat flux enhancement,' Applied Physics Letters, vol. 102, 151602, 2013. [18] M. C. Lu, R. K. Chen, V. Srinivasan, V. Carey, and A. Majumdar, 'Critical heat flux of pool boiling on Si nanowire array-coated surfaces,' International Journal of Heat and Mass Transfer, vol. 54, pp. 5359-5367, Dec 2011. [19] A. Zou and S. C. Maroo, 'Critical height of micro/nano structures for pool boiling heat transfer enhancement,' Applied Physics Letters, vol. 103, Nov 25 2013. [20] B. J. Jones, J. P. McHale, and S. V. Garimella, 'The influence of surface roughness on nucleate pool boiling heat transfer,' Journal of Heat Transfer-Transactions of the Asme, vol. 131, Dec 2009. [21] S. M. Kwark, M. Amaya, R. Kumar, G. Moreno, and S. M. You, 'Effects of pressure, orientation, and heater size on pool boiling of water with nanocoated heaters,' International Journal of Heat and Mass Transfer, vol. 53, pp. 5199-5208, Nov 2010. [22] J. T. Cieslinski and T. Z. Kaczmarczyk, 'The effect of pressure on heat transfer during pool boiling of water-Al2O3 and water-Cu nanofluids on stainless steel smooth tube,' Chemical and Process Engineering-Inzynieria Chemiczna I Procesowa, vol. 32, pp. 321-332, Dec 2011. [23] J. H. Lee, T. Lee, and Y. H. Jeong, 'The effect of pressure on the critical heat flux in water-based nanofluids containing Al2O3 and Fe3O4 nanoparticles,' International Journal of Heat and Mass Transfer, vol. 61, pp. 432-438, Jun 2013. [24] R. N. Hegde, S. S. Rao, and R. P. Reddy, 'Investigations on Boiling-Induced Nanoparticle Coating, Transient Characteristics, and Effect of Pressure in Pool Boiling Heat Transfer on a Cylindrical Surface,' Experimental Heat Transfer, vol. 25, pp. 323-340, Oct 1 2012. [25] 'https://en.wikipedia.org/wiki/Wetting.' [26] T. Young, 'An Essay on the Cohesion of Fluids,' Philosophical Transactions of the Royal Society of London, vol. 95, pp. 65-87, 1805. [27] R. N. Wenzel, 'Resistance of solid surfaces to wetting by water,' Industrial and Engineering Chemistry, vol. 28, pp. 988-994, 1936. [28] A. B. D. Cassie and S. Baxter, 'Wettability of porous surfaces.,' Transactions of the Faraday Society, vol. 40, pp. 0546-0550, 1944. [29] S. G. Bankoff, 'Ebullition from solid surfaces in the absence of a pre-existing gaseous phase,' pp. 735–740, 1957. [30] C. C. Hsu, W. C. Chiu, L. S. Kuo, and P. H. Chen, 'Reversed boiling curve phenomenon on surfaces with interlaced wettability,' AIP Advances, vol. 4, Oct 2014. [31] C. H. Wu, Y. S. Huang, L. S. Kuo, and P. H. Chen, 'The effects of boundary wettability on turbulent natural convection heat transfer in a rectangular enclosure,' International Journal of Heat and Mass Transfer, vol. 63, pp. 249-254, Aug 2013. [32] C. C. Hsu and P. H. Chen, 'Surface wettability effects on critical heat flux of boiling heat transfer using nanoparticle coatings,' International Journal of Heat and Mass Transfer, vol. 55, pp. 3713-3719, Jun 2012. [33] J. R. Taylor, An introduction to error analysis: the study of uncertainties in physical measurements , 2nd ed. Sausalito, California: University Science Books, 1997. [34] K. Cornwell and S. D. Houston, 'Nucleate pool boiling on horizontal tubes - a convection-based correlation,' International Journal of Heat and Mass Transfer, vol. 37, pp. 303-309, Mar 1994. [35] M. G. Kang, 'Effect of surface roughness on pool boiling heat transfer,' International Journal of Heat and Mass Transfer, vol. 43, pp. 4073-4085, Nov 2000. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50016 | - |
dc.description.abstract | 本研究在外直徑25mm的紅銅圓管上,以溶膠凝膠法搭配膠帶作為遮罩的方式製備出異質潤濕性表面,此異質潤濕性表面上共有兩種不同的潤濕性,一種為未經過改質的紅銅表面,其經過烘烤的步驟後,靜態接觸角為90°左右,若未經過烘烤則表面的靜態接觸角則為77°,而另一種為經過二氧化矽奈米粒子改質過後的超親水表面,其接觸角小於10°,在紅銅圓管上,以交錯式的方式,分別出現此兩種表面,稱為交錯式潤濕性表面,將完成製備的紅銅表面黏合於實驗設備後進行池沸騰的研究。
本研究主要有兩種變因來探討其個別對於池沸騰的影響,包括改變超親水表面於總體散熱面積的比例以及改變交錯式潤濕性界面數兩種,而在進行交錯潤濕性表面的研究前,首先以未改質的紅銅表面來進行研究,發現量測孔洞的位置會影響其溫度的量測,並由實驗結果可以得知,傾斜角越大的表面擁有較低的表面過熱度,並以此為基礎,若將實驗表面分為上、下兩個半圓進行探討,發現下半圓因受到表面阻擋的關係,其氣泡提前邁入聚合的階段,比起上表面擁有更佳的沸騰熱傳矽數,而在異質潤濕性的表面的研究中,首先,先固定交錯式潤濕性的界面數,探討超親水面積比例的影響,由實驗結果發現,其界面數在7條以下時,不同的超親水面積比例其沸騰熱傳曲線並沒有明顯的差異,而在界面數為15條的情況下,30%及50%的沸騰曲線相似,然而70%的沸騰曲線由於其散熱面上的氣泡除了可以與相同界面上氣泡進行聚合外,也可以與鄰近界面上的氣泡合併,因此沸騰曲線向左偏移並擁有較佳的沸騰熱傳表現,另外,交錯式潤濕性界面數的研究中,將固定超親水面積的比例,探討界面數的增加對於沸騰熱傳有何種程度的影響,由實驗結果可以發現,交錯潤濕性表面比起未改質表面皆擁有更佳的沸騰熱傳表現,且在相同的熱通量下,熱傳係數將隨著界面數的增加而提升。 | zh_TW |
dc.description.abstract | This study used sol-gel method and tape as a mask to fabricate the heterogeneous wettability surface on a copper tube with 25mm in diameter. There are two wettabilities on the heterogeneous surface. One is plain surface with its contact angle equal to 90° after baking process. However, it is worth mentioning that the contact angle of the plain surface without baking is equal to 77°. The other one is the superhydrophilic surface modified with silica nanoparticles and the contact angle of the superhydrophilic surface is smaller than 10°. On the copper surface, the strip with one wettability will follow with the strip with the other wettability to form an “interlaced wettability” surface. This study performed pool boiling experiments with surfaces of interlaced wettability.
There are two parameters in this study, including the ratio of superhydrophilic surface area and the number of the interlaced line. Before performing experiments with interlaced wettability, this study investigated the effect of measuring location on a copper cylinder. From present results, wall superheat increases with the decrease of inclined angle. On this basis, the heating surface was split into two surfaces. One is the upper surface facing up and the other one is the lower surface facing down. Experimental results showed that heat transfer coefficient of the upper surface is higher than it of the lower surface. Move on to experimental results of interlaced wettability. First, the number of the interlaced line was fixed to examine the effect of the ratio of superhydrophilic surface area. Experimental results showed that the ratio of superhydrophilic surface area won’t affect pool boiling curves when the number of interlaced line is lower than 7. However, at the condition of 15 interlaced lines, although the pool boiling curve of 30% case was similar to it of 50%. The pool boiling curve of 70% case had a shift to left because bubbles on the interlaced line could not only merge with bubbles beside them but also combine with bubbles in front of them. Due to this phenomenon, the surface of 70% case could have better heat transfer performance. Second, the ratio of superhydrophilic area was fixed to examine the effect of the number of interlaced line. From experimental results, wall superheat decreased with the increase of number of interlaced line among 30%、50% and 70% conditions. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T12:27:50Z (GMT). No. of bitstreams: 1 ntu-105-R03522302-1.pdf: 8502701 bytes, checksum: af55dd6d13b4141826353deb05a3f873 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii Abstract iv 英文符號說明 vi 上標說明 ix 下標說明 x 第1章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究目的 5 第2章 研究基本理論 13 2.1表面潤濕性及表面改質 13 2.1.1潤濕性 13 2.1.2接觸角理論 13 2.1.2.1楊氏方程式(Young’s equation) 14 2.1.2.2溫佐模型(Wenzel model) 14 2.1.2.3卡西-巴斯特模型(Cassie-Baxter model) 15 2.1.3表面改質 15 2.2池沸騰 18 2.2.1池沸騰曲線 18 2.2.2接觸角與氣泡生成所需能量之理論模型 19 2.2.3交錯潤濕性表面之理論模型 20 第3章 實驗步驟 27 3.1表面改質 27 3.1.1親水溶液配製 27 3.1.2表面改質步驟 27 3.2表面分析 28 3.3池沸騰實驗系統 28 3.3.1設備架設 29 3.3.2操作步驟 29 3.3.3表面熱通量及過熱度計算 29 第4章 結果與討論 40 4.1實驗可行性之分析 40 4.2量測孔洞位置的影響 40 4.3均質潤濕性表面及異質潤濕性表面 41 4.3.1均質潤濕性表面-表面潤濕性的影響 41 4.3.2異質潤濕性表面-交錯界面數對於沸騰熱傳曲線的影響 42 4.4不同的超親水面積比例下對池沸騰熱傳的影響 43 第5章 結論與未來工作 58 5.1結論 58 5.2未來工作 59 參考文獻 60 附錄-1 65 附錄-2 66 附錄-3 68 附錄-4 69 | |
dc.language.iso | zh-TW | |
dc.title | 交錯潤濕性表面於紅銅圓管表面之池沸騰熱傳研究 | zh_TW |
dc.title | Experimental Investigation on Pool Boiling Heat Transfer Enhancement by Using Interlaced Wettability Surfaces on a Copper Cylinder | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李達生(Da-Sheng Lee),許進吉(Chin-Chi Hsu) | |
dc.subject.keyword | 池沸騰,表面改質,交錯潤濕性, | zh_TW |
dc.subject.keyword | pool boiling,surface modification,interlaced wettability, | en |
dc.relation.page | 70 | |
dc.identifier.doi | 10.6342/NTU201602148 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-08-09 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 8.3 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。