Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50004
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳佩貞
dc.contributor.authorGuan-Wei Chenen
dc.contributor.author陳冠維zh_TW
dc.date.accessioned2021-06-15T12:27:36Z-
dc.date.available2019-08-31
dc.date.copyright2016-08-31
dc.date.issued2016
dc.date.submitted2016-08-08
dc.identifier.citation(1) Abadin, H.; Ashizawa, A.; Stevens, Y.-W.; Llados, F.; Diamond, G.; Sage, G.; Citra, M.; Quinones, A.; Bosch, S. J.; Swarts, S. G., Toxicological profile for lead. Agency for Toxic Substances and Disease Registry: 2007.
(2) Amato, E. D.; Simpson, S. L.; Jarolimek, C. V.; Jolley, D. F., Diffusive Gradients in Thin Films Technique Provide Robust Prediction of Metal Bioavailability and Toxicity in Estuarine Sediments. Environ Sci Technol 2014, 48, (8), 4485-4494.
(3) Bellinger, D. C., Lead. Pediatrics 2004, 113, (4), 1016-1022.
(4) Beveridge, A.; Waller, P.; Pickering, W. F., Evaluation of Labile Metal in Sediments by Use of Ion-Exchange Resins. Talanta 1989, 36, (5), 535-542.
(5) Burton, G. A., Sediment toxicity assessment. Lewis publishers: 1992.
(6) Carlson, E. A.; Li, Y.; Zelikoff, J. T., Exposure of Japanese medaka (Oryzias latipes) to benzo[a]pyrene suppresses immune function and host resistance against bacterial challenge. Aquat Toxicol 2002, 56, (4), 289-301.
(7) Costello, D. M.; Hammerschmidt, C. R.; Burton, G. A., Copper Sediment Toxicity and Partitioning during Oxidation in a Flow-Through Flume. Environ Sci Technol 2015, 49, (11), 6926-6933.
(8) David, I. G.; Matache, M. L.; Tudorache, A.; Chisamera, G.; Rozylowicz, L.; Radu, G. L., Food Chain Biomagnification of Heavy Metals in Samples from the Lower Prut Floodplain Natural Park. Environ Eng Manag J 2012, 11, (1), 69-73.
(9) Dawe, C. J.; Stanton, M. F.; Schwartz, F. J., Hepatic neoplasms in native bottom-feeding fish of Deep Creek Lake, Maryland. Cancer Res 1964, 24, (7), 1194-1201.
(10) Dedolph, R.; Ter Haar, G.; Holtzman, R.; Lucas, H., Sources of lead in perennial ryegrass and radishes. Environ Sci Technol 1970, 4, (3), 217-223.
(11) DeWitt, T. H.; Ditsworth, G. R.; Swartz, R. C., Effects of natural sediment features on survival of the phoxocephalid amphipod, Rhepoxynius abronius. Mar Environ Res 1988, 25, (2), 99-124.
(12) Di Bonito, M.; Breward, N.; Crout, N.; Smith, B.; Young, S., Overview of selected soil pore water extraction methods for the determination of potentially toxic elements in contaminated soils: operational and technical aspects. Environmental Geochemistry: Site Characterization, Data Analysis, Case Histories. Elsevier 2008, 213-249.
(13) Di Toro, D. M.; Zarba, C. S.; Hansen, D. J.; Berry, W. J.; Swartz, R. C.; Cowan, C. E.; Pavlou, S. P.; Allen, H. E.; Thomas, N. A.; Paquin, P. R., Technical basis for establishing sediment quality criteria for nonionic organic chemicals using equilibrium partitioning. Environ Toxicol Chem 1991, 10, (12), 1541-1583.
(14) Ditoro, D. M.; Zarba, C. S.; Hansen, D. J.; Berry, W. J.; Swartz, R. C.; Cowan, C. E.; Pavlou, S. P.; Allen, H. E.; Thomas, N. A.; Paquin, P. R., Technical Basis for Establishing Sediment Quality Criteria for Nonionic Organic-Chemicals Using Equilibrium Partitioning. Environ Toxicol Chem 1991, 10, (12), 1541-1583.
(15) Edwards, M.; Dudi, A., Role of chlorine and chloramine in corrosion of lead-bearing plumbing materials. Journal (American Water Works Association) 2004, 96, (10), 69-81.
(16) Emmerson, B., The renal excretion of urate in chronic lead nephropathy. Australasian annals of medicine 1965, 14, (4), 295.
(17) Eyckmans, M.; Lardon, I.; Wood, C. M.; De Boeck, G., Physiological effects of waterborne lead exposure in spiny dogfish (Squalus acanthias). Aquat Toxicol 2013, 126, 373-381.
(18) Figura, P.; Mcduffie, B., Use of Chelex Resin for Determination of Labile Trace-Metal Fractions in Aqueous Ligand Media and Comparison of the Method with Anodic-Stripping Voltammetry. Anal Chem 1979, 51, (1), 120-125.
(19) Fleischer, M., Lead in igneous and metamorphic rocks and in their rock-forming minerals. Lead in the Environment: A Compilation of Papers on the Abundance and Distribution of Lead in Rocks, Soils, Plants, and the Atomsphere, and on Methods of Analysis for Lead Used by the US Geological Survey 1976, 957, 25.
 
(20) Gillis, B. S.; Arbieva, Z.; Gavin, I. M., Analysis of lead toxicity in human cells. Bmc Genomics 2012, 13.
(21) Gonzalez-Doncel, M.; de la Pena, E.; Barrueco, C.; Hinton, D. E., Stage sensitivity of medaka (Oryzias latipes) eggs and embryos to permethrin. Aquat Toxicol 2003, 62, (3), 255-268.
(22) Gonzalez-Doncel, M.; Larrea, M.; Sanchez-Fortun, S.; Hinton, D. E., Influence of water hardening of the chorion on cadmium accumulation in medaka (Oryzias latipes) eggs. Chemosphere 2003, 52, (1), 75-83.
(23) Goyer, R. A., Transplacental transport of lead. Environ Health Persp 1990, 89, 101.
(24) Haley, T. J., A review of the toxicology of lead. American Petroleum Institute: 1969.
(25) Helmstetter, M. F.; Alden, R. W., Toxic responses of Japanese medaka (Oryzias latipes) eggs following topical and immersion exposures to pentachlorophenol. Aquat Toxicol 1995, 32, (1), 15-29.
(26) Hem, J., Inorganic chemistry of lead in water. Lead in the Environment. USGS Prof. Paper 1976, 957, 5-11.
(27) Hernberg, S., Lead poisoning in a historical perspective. Am J Ind Med 2000, 38, (3), 244-254.
(28) Hicken, C. E.; Linbo, T. L.; Baldwin, D. H.; Willis, M. L.; Myers, M. S.; Holland, L.; Larsen, M.; Stekoll, M. S.; Rice, S. D.; Collier, T. K.; Scholz, N. L.; Incardona, J. P., Sublethal exposure to crude oil during embryonic development alters cardiac morphology and reduces aerobic capacity in adult fish. P Natl Acad Sci USA 2011, 108, (17), 7086-7090.
(29) Hinchey, E. K.; Schaffner, L. C., An evaluation of electrode insertion techniques for measurement of redox potential in estuarine sediments. Chemosphere 2005, 59, (5), 703-710.
 
(30) Holden, M. J.; Raitt, D. F. S., Manual of fisheries science. Part 2-Methods of resource investigation and their application. 1974.
(31) Holland, K. T.; Elmore, P. A., A review of heterogeneous sediments in coastal environments. Earth-Sci Rev 2008, 89, (3-4), 116-134.
(32) Huettel, M.; Ziebis, W.; Forster, S., Flow-induced uptake of particulate matter in permeable sediments. Limnol Oceanogr 1996, 41, (2), 309-322.
(33) Ingersoll, C. G.; Brunson, E. L.; Dwyer, F. J.; Ankley, G. T.; Benoit, D. A.; Norberg‐King, T. J.; Burton, G. A.; Hoke, R. A.; Landrum, P. F.; Winger, P. V., Toxicity and bioaccumulation of sediment‐associated contaminants using freshwater invertebrates: A review of methods and applications. Environ Toxicol Chem 1995, 14, (11), 1885-1894.
(34) Ingersoll, C. G.; Haverland, P. S.; Brunson, E. L.; Canfield, T. J.; Dwyer, F. J.; Henke, C. E.; Kemble, N. E.; Mount, D. R.; Fox, R. G., Calculation and evaluation of sediment effect concentrations for the amphipod Hyalella azteca and the midge Chironomus riparius. Journal of Great Lakes Research 1996, 22, (3), 602-623.
(35) Iwamatsu, T., Effects of Ph on the Fertilization Response of the Medaka Egg. Dev Growth Differ 1984, 26, (6), 533-544.
(36) Iwamatsu, T., Stages of normal development in the medaka Oryzias latipes. Mech Develop 2004, 121, (7-8), 605-618.
(37) Kalnejais, L. H.; Martin, W. R.; Signall, R. P.; Bothner, M. H., Role of sediment resuspension in the remobilization of particulate-phase metals from coastal sediments. Environ Sci Technol 2007, 41, (7), 2282-2288.
(38) Kemble, N. E.; Dwyer, F. J.; Ingersoll, C. G.; Dawson, T. D.; Norberg‐King, T. J., Tolerance of freshwater test organisms to formulated sediments for use as control materials in whole‐sediment toxicity tests. Environ Toxicol Chem 1999, 18, (2), 222-230.
 
(39) Koller, K.; Brown, T.; Spurgeon, A.; Levy, L., Recent developments in low-level lead exposure and intellectual impairment in children. Environ Health Persp 2004, 112, (9), 987-994.
(40) Lee, D.-Y.; Chiang, P.-H.; Houng, K.-H., Determination of bioavailable cadmium in paddy fields by chelating resin membrane embedded in soils. Plant and Soil 1996, 181, (2), 233-239.
(41) Lee, D.-Y.; Huang, J.-C.; Juang, K.-W.; Tsui, L., Assessment of phytotoxicity of chromium in flooded soils using embedded selective ion exchange resin method. Plant and soil 2005, 277, (1-2), 97-105.
(42) Lidsky, T. I.; Schneider, J. S., Lead neurotoxicity in children: basic mechanisms and clinical correlates. Brain 2003, 126, 5-19.
(43) Lien, N. T. H.; Adriaens, D.; Janssen, C. R., Morphological abnormalities in African catfish (Clarias garieupinus) larvae exposed to malathion. Chemosphere 1997, 35, (7), 1475-1486.
(44) Long, E. R.; Ingersoll, C. G.; Macdonald, D. D., Calculation and uses of mean sediment quality guideline quotients: A critical review. Environ Sci Technol 2006, 40, (6), 1726-1736.
(45) Long, E. R.; Morgan, L. G. The potential for biological effects of sediments-sorbed contaminants tested in the National Status and Trends Program; National Oceanic and Atmospheric Admininistration: 1990.
(46) Lovering, T., Lead in the environment–summary. Lead in the Environment. US Department of the Interior, US Government Printing Office, Washington, DC, USA 1976, 1-4.
(47) Manunza, B.; Deiana, S.; Maddau, V.; Gessa, C.; Seeber, R., Stability-Constants of Metal-Humate Complexes - Titration Data Analyzed by Bimodal Gaussian Distribution. Soil Sci Soc Am J 1995, 59, (6), 1570-1574.
 
(48) Martinez, C.; Nagae, M.; Zaia, C.; Zaia, D., Acute morphological and physiological effects of lead in the neotropical fish Prochilodus lineatus. Brazilian Journal of Biology 2004, 64, (4), 797-807.
(49) Mason, L. H.; Harp, J. P.; Han, D. Y., Pb Neurotoxicity: Neuropsychological Effects of Lead Toxicity. Biomed Res Int 2014.
(50) Meers, E.; Du Laing, G.; Unamuno, V. G.; Lesage, E.; Tack, F. M. G.; Verloo, M. G., Water extractability of trace metals from soils: Some pitfalls. Water Air Soil Poll 2006, 176, (1-4), 21-35.
(51) Mudipalli, A., Lead hepatotoxicity & potential health effects. Indian Journal of Medical Research 2007, 126, (6), 518.
(52) Mulligan, C. N.; Yong, R. N.; Gibbs, B. F., Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng Geol 2001, 60, (1-4), 193-207.
(53) Needleman, H., Lead poisoning. Annu Rev Med 2004, 55, 209-222.
(54) Nobel, A., Chelex® 100 and Chelex 20 Chelating Ion Exchange Resin Instruction Manual. Bio-Rad Laboratories 2000.
(55) Osman, A. G. E.-K. M. Embryo-toxic effects of lead nitrate of the African catfish Clarias gariepinus (Burchell, 1822). Humboldt-Universität zu Berlin, Landwirtschaftlich-Gärtnerische Fakultät, 2007.
(56) Padilla, S.; Hunter, D. L.; Padnos, B.; Frady, S.; MacPhail, R. C., Assessing locomotor activity in larval zebrafish: Influence of extrinsic and intrinsic variables. Neurotoxicol Teratol 2011, 33, (6), 624-630.
(57) Peng, J. F.; Song, Y. H.; Yuan, P.; Cui, X. Y.; Qiu, G. L., The remediation of heavy metals contaminated sediment. J Hazard Mater 2009, 161, (2-3), 633-640.
(58) Plumb Jr, R. H. Procedures for handling and chemical analysis of sediment and water samples; DTIC Document: 1981.
(59) Pounds, J. G.; Long, G. J.; Rosen, J. F., Cellular and Molecular Toxicity of Lead in Bone. Environ Health Persp 1991, 91, 17-32.
(60) Ritz, C.; Streibig, J. C., Bioassay analysis using R. J Stat Softw 2005, 12, (5), 1-22.
(61) Rothenberg, S. J.; Karchmer, S.; Schnaas, L.; Perroni, E.; Zea, F.; Alba, J. F., Changes in Serial Blood Lead Levels during Pregnancy. Environ Health Persp 1994, 102, (10), 876-880.
(62) Schumacher, B. A., Methods for the determination of total organic carbon (TOC) in soils and sediments. Ecological Risk Assessment Support Center 2002, 2002, 1-23.
(63) Scrudato, R. J.; Estes, E. L., Clay-Lead Sorption Relations. Environ Geol 1976, 1, (3), 167-170.
(64) Sfakianakis, D. G.; Renieri, E.; Kentouri, M.; Tsatsakis, A. M., Effect of heavy metals on fish larvae deformities: A review. Environ Res 2015, 137, 246-255.
(65) Simons, T., Lead-calcium interactions in cellular lead toxicity. Neurotoxicology 1992, 14, (2-3), 77-85.
(66) Simpson, S. L.; Apte, S. C.; Batley, G. E., Effect of short term resuspension events on trace metal speciation in polluted anoxic sediments. Environ Sci Technol 1998, 32, (5), 620-625.
(67) Siver, P. A.; Wizniak, J. A., Lead analysis of sediment cores from seven Connecticut lakes. J Paleolimnol 2001, 26, (1), 1-10.
(68) Tessier, A.; Campbell, P. G. C.; Bisson, M., Sequential Extraction Procedure for the Speciation of Particulate Trace-Metals. Anal Chem 1979, 51, (7), 844-851.
(69) Tucker, C. C.; Robinson, E. H., Channel catfish farming handbook. Springer Science & Business Media: 1990.
(70) USEPA, Methods for Measuring the Toxicity and Bioaccumulation of Sediment-associated Contaminants with Freshwater Invertebrates; EPA 600-R-99-064; United States Environmental Protection Agency: Washington, DC, 1994.
(71) USEPA, EPA’s Contaminated Sediment Management Strategy; EPA 823-R-98-001; United States Environmental Protection Agency: Washington, DC, 1998.
(72) USEPA, Contaminated sediment remediation guidance for hazardous waste sites; EPA 540-R-05-012; United States Environmental Protection Agency: Office of Solid Waste and Emergency Response, 2005.
(73) USEPA, Sediment Classification Methods Compendium; EPA 823-R-92-006; United States Environmental Protection Agency: Washington, DC, 1992.
(74) Verstraeten, S.; Aimo, L.; Oteiza, P., Aluminium and lead: molecular mechanisms of brain toxicity. Arch Toxicol 2008, 82, (11), 789-802.
(75) Xie, M. W.; Jarrett, B. A.; Da Silva-Cadoux, C.; Fetters, K. J.; Burton, G. A.; Gaillard, J. F.; Packman, A. I., Coupled Effects of Hydrodynamics and Biogeochemistry on Zn Mobility and Speciation in Highly Contaminated Sediments. Environ Sci Technol 2015, 49, (9), 5346-5353.
(76) Zirbser, K.; Healy, R.; Stahl, L.; Tate, B., Methods for Collection, Storage and Manipulation of Sediments for Chemical and Toxicological Analyses: Technical Manual. In United States Environmental Protection Agency, Office of Science & Technology. Washington, DC, 2001.
(77) 台灣行政院環境保護署(TWEPA)。2011。底泥污染來源及傳輸模式調查計畫-以重點河川為例。EPA-100-GA102-02-A232。
(78) 台灣行政院環境保護署環境檢驗所(NIEA)。2011。魚介類酸性消化總則-微波消化�元素分析。NIEA-C302-02C。
(79) 台灣行政院環境保護署環境檢驗所(NIEA)。2015。廢棄物及底泥中金屬檢測方法-微波輔助酸消化法。NIEA-M301-00B。
(80) 林玉環、郭明新、庄岩。1997。底泥酸揮發性硫及同步浸提重金屬的測定。環境科學學報第17卷第3期。p. 353-358。
(81) 林永立、郭寶錚、王慶裕。1997。對數邏輯模式在劑量反應上的應用。中華民國雜草學會會刊第18卷第一期。p. 1-18。
 
(82) 林書庸。2006。三價鉻在水田土壤中之有效性與其對水稻之毒害評估。碩士論文。國立台灣大學生物資源暨農學院農業化學系。
(83) 吳宛霖。2012。不同奈米鐵對青鱂早期發育階段之生物累積及毒性效應。碩士論文。國立台灣大學生物資源暨農學院農業化學系。
(84) 吳斌、宋金明、李學剛、袁華茂、李寧。2012。沉積物質量評價”三元法”及其在近海中的應用。生態學報第32卷第14期。p. 4566-4574。
(85) 凌永健、陳柏嘉、宋福祥、王振宇、葉明軒。2011。被動式採樣器於環境檢測之應用。科儀新知第三十三卷第一期。p. 59。
(86) 黃建中。2004。以選擇性離子交換樹脂埋入法測定水田土壤中六價鉻的有效性。碩士論文。國立台灣大學生物資源暨農學院農業化學系。
(87) 邱聖翔。2015。底泥中多環芳香烃對青鱂魚胚胎生物有效性及毒性效應之探討。碩士論文。國立台灣大學生物資源暨農學院農業化學系。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50004-
dc.description.abstract底泥重金屬汙染是重要的環境議題,重金屬在水體環境中容易被有機質、黏土顆粒、鐵錳氧化物等環境基質吸附鍵結,或形成碳酸鹽、硫化物等低溶解度的化合物,而沉積在底泥當中。然而水體的擾動或是生物活動可能使底泥重金屬重新釋放到水體,因而提高水生生物的暴露風險。為了瞭解底泥重金屬對生物體的危害潛勢,本研究旨在利用離子交換樹脂埋入法,搭配青鱂魚胚胎─魚苗試驗(Medaka embryo-larval assay, MELA),以評估此方法應用於預測重金屬鉛於底泥之生物有效性及毒性效應的可行性。本實驗選用不同來源及物化特性之人造或環境底泥,分別配製成汙染程度不一的含鉛底泥樣品,再利用全底泥暴露(Whole sediment exposure)方法,將青鱂魚胚胎(Medaka embryos, Oryzias latipes)置於含鉛底泥中連續暴露7天,觀察胚胎及魚苗的死亡率、生物累積量及半致死效應。此外,暴露期間之底泥表層水及孔隙水也用以量測鉛離子濃度及生物毒性效應,並比較利用不同生物暴露法-包括全底泥、覆蓋水(Overlying water)及孔隙水(Pore water)暴露法-評估鉛汙染底泥之胚胎毒性效應是否有差異。結果顯示以全底泥暴露法測得之胚胎死亡率和底泥總鉛濃度呈現較顯著之劑量反應關係:青鱂魚胚胎暴露於含鉛人造底泥(50-800 mg/kg),第7天胚胎死亡率(Mortality)為5%-53%,總畸形率(Deformation rate in hatchlings)為10%-100%。實驗證明鉛離子對胚胎的急毒性較低(LD50≒13.8 mg/L),但有很高的致畸性(顯著致畸濃度>0.65 mg/L),其中以脊柱發育異常(Lordosis /kyphosis)發生比例最高。此外,孔隙水暴露法所得毒性結果低於全底泥暴露法與覆蓋水暴露法的結果,顯示全底泥暴露法與覆蓋水暴露法應較能反映現地環境底泥重金屬汙染對底棲生物的實際毒性效應。研究進一步利用對數邏輯模式(Log-logistic model),將離子交換樹脂(Chelex 100)埋入法抽出底泥(人造及夢湖底泥)中之游離性鉛含量,與全底泥暴露法與覆蓋水暴露法所得之胚胎存活率(Survival rate of embryos)、非畸形率(Non-malformation rate in hatchalings)與生物累積量等指標繪製劑量反應關係,結果皆呈現高度相關性(R > 0.90),說明水體中游離態鉛確實為引起胚胎毒性的主要原因,並且透過生物累積量與兩種方法抽出鉛量所計算之相關性,說明離子交換樹脂埋入法更能準確預測底泥鉛之生物有效性及危害潛勢(R = 0.98)。本研究利用青鱂魚胚胎,透過全底泥暴露法的毒性試驗成果,證實離子交換樹脂埋入法抽出之底泥鉛含量能夠有效預測底泥重金屬之生物有效性及生物毒性潛勢,可進一步應用於評估現地底泥重金屬污染之危害風險。zh_TW
dc.description.abstractSediment pollution by heavy metals is an important environment issue for a long time. Heavy metals are easily adsorbed to the organic matter, clay particles and/or iron or manganese oxides in water and then deposited in sediments as a pollutant source. They are likely to be released to the water column via disturbance by water flow or benthic organisms, thus enhancing the exposure risk of aquatic organisms to heavy metals. In order to evaluate the toxic and bioavailable potential of lead (Pb)-contaminated sediments for aquatic organisms, this study aims to establish the medaka (Oryzias latipes) embryo-larval assay (MELA) and selective ion exchange resin (Chelex 100) embedding in artificial or environmental sediments. First, we demonstrated that lead spiked artificial sediments (50-800 mg-pb/kg sediment dry weight) evoked dose dependent toxic effects in mortality and developmental toxicity (e.g., malformation) of medaka embryos or larvae. The lead exposure from the contaminated sediment induced high developmental toxicity in medaka embryos, especially for lordosis/kyphosis. As well, the dose-response relationship is more significant with the whole sediment exposure, as compared to those results with aqueous exposures of pore water (extracting with vacuum suction) or overlaying water collected from the lead contaminated sediments. Also, the concentration of soluble lead ion in pore water was lower than that measured in overlaying water. These results indicated that aqueous exposure of pore water from lead contaminated sediments with vacuum suction may not well express lead bioavailability in sediment to medaka embryos because it had less lead ion and caused lower embryonic mortality. On the other hand, we embedded the selective ion exchange resin (Ca-saturated Chelex 100, 1 g per batch, 2 days) in lead spiked sediments (including artificial sediments and environmental sediment from Moon-lake) to extract lead with bioavailable potency. Finally, the log-logistic model was used to compute the correlation of Chelex 100-extracable lead or soluble lead in overlaying water with the observed toxicity from the medaka biomarker assays. We demonstrated that Chelex 100-extracable lead had significantly negative correlation with the survival rate and non-malformation of medaka embryos/hatchlings in both sediments. Overall, this study demonstrate that ion exchange resin Chelex 100 embedded method is a promising approach to determine bioavailable portion of heavy metals in sediments in situ.en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:27:36Z (GMT). No. of bitstreams: 1
ntu-105-R03623002-1.pdf: 17509913 bytes, checksum: c1c7d94de4cc3d9654d225a19807d9c6 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents誌謝 I
縮寫對照表 II
摘要 IV
Abstract VI
目錄 VIII
圖目錄 XI
表目錄 XIII
第一章 前言與研究動機 1
第二章 文獻回顧 2
2.1 底泥與其汙染危害 2
2.2 環境中鉛的危害實例與污染途徑 3
2.3 鉛在水相及固相中的型態 6
2.4 鉛離子之生物毒性 8
2.5 底泥重金屬生物有效性的量測方法回顧 10
2.5.1 底泥毒性與品質評估方法的種類與應用 10
2.5.2 以底棲生物和魚類為對象進行底泥生物毒性試驗 15
2.5.3 被動原位採樣分析技術應用於底泥重金屬有效性測定 17
2.6 離子交換樹脂Chelex 100的應用性 18
2.7 模式生物─青鱂魚胚胎 20
2.8 研究目的 21
第三章、材料與方法 22
3.1 研究架構說明 22
3.2 實驗器材 24
3.2.1 藥品及器材 24
3.2.2 儀器設備 25
3.3 青鱂魚之馴養及試驗胚胎挑選 26
3.3.1青鱂魚成魚之馴養條件 26
3.3.2青鱂魚胚胎之收集 27
3.4 鉛汙染人造底泥之全底泥暴露胚胎(Whole sediment exposure)毒性試驗 28
3.4.1 供試人造底泥之製備、濃度選用及添加方法 28
3.4.2全底泥暴露法之胚胎毒性試驗設計 30
3.4.3 樣品收集與生物指標觀察 32
3.5 鉛汙染人造底泥之底泥覆蓋水、孔隙水暴露胚胎毒性試驗 36
3.5.1 底泥覆蓋水及孔隙水採樣方法 36
3.5.2 胚胎毒性試驗設計 38
3.5.3 底泥覆蓋水、孔隙水及總量鉛分析 38
3.6 利用環境底泥進行全底泥暴露胚胎毒性實驗 40
3.6.1 底泥之採樣地點 40
3.6.2 供試底泥之基本性質分析 42
3.6.3 環境底泥之全底泥暴露胚胎毒性試驗流程 44
3.6.4 樣品收集、生物指標觀察與鉛濃度分析 44
3.7 離子交換樹脂埋入法抽出底泥中有效性鉛之方法建立 45
3.7.1 選擇性離子交換樹脂製備與基本性質分析 45
3.7.1.1 Ca2+-form離子交換樹脂(Chelex 100)之製備 45
3.7.1.2 樹脂袋製備流程及步驟 45
3.7.2 選擇性離子交換樹脂對於不同濃度鉛之吸附與脫附 47
3.7.2.1 Chelex 100吸附容量計算評估 47
3.7.2.2 吸脫附試驗 47
3.7.3 選擇性離子交換樹脂埋入底泥之方法流程 48
3.7.4 離子交換樹脂埋入底泥中,不同時間下鉛累積於樹脂袋之測定 50
3.8 資料統計 51
第四章 結果與討論 52
4.1 利用全底泥暴露法評估高濃度鉛汙染人造底泥之胚胎毒性試驗結果 52
4.1.1 人造底泥之基本理化性質 52
4.1.2 高汙染鉛濃度人造底泥暴露實驗後胚胎毒性結果 54
4.1.2.1 急毒性結果 54
4.1.2.2 發育毒性結果 54
4.2 底泥覆蓋水及孔隙水之水相暴露結果探討(高濃度鉛汙染底泥) 59
4.2.1 生物毒性結果 59
4.2.2 暴露實驗前後底泥覆蓋水、孔隙水及總量鉛之變化 61
4.3 三種暴露方法綜合比較(針對高濃度鉛汙染人造底泥) 64
4.4 環境汙染濃度下之鉛汙染人造底泥全底泥暴露胚胎毒性試驗結果 66
4.4.1 毒性指標與化學分析結果(人造底泥) 66
4.5 環境濃度下之鉛汙染環境底泥全底泥暴露實驗結果 73
4.5.1 汐止新山夢湖底泥特性分析 73
4.5.2 生物毒性與化學分析結果 75
4.6 選擇性離子交換樹脂Chelex 100基本性質之探討 81
4.6.1 樹脂吸附能力測試結果 81
4.6.2 鉛在樹脂上之累積量與埋入時間的關係 83
4.7 樹脂埋入法抽取鉛量與生物毒性指標的關係 89
第五章 附錄圖表 97
第六章 參考文獻 99
dc.language.isozh-TW
dc.title以離子交換樹脂埋入法評估重金屬鉛於底泥之生物有效性及毒性效應zh_TW
dc.titleUsing selective ion exchange resin embedded in sediment to assess bioavailability and toxicity of Pb-contaminated sedimentsen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李達源,吳先琪,林逸彬
dc.subject.keyword底泥,重金屬鉛,青?魚胚胎─魚苗試驗,急毒性,離子交換樹脂Chelex 100,對數邏輯模式,zh_TW
dc.subject.keywordSediment,Heavy metal (Pb),Medaka embryo-larval assay,Acute toxicity test,Selective ion exchange resin Chelex 100,Log-logistic model,en
dc.relation.page107
dc.identifier.doi10.6342/NTU201602113
dc.rights.note有償授權
dc.date.accepted2016-08-09
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
17.1 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved