Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49973
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳玉如(Yu-Ju Chen)
dc.contributor.authorPin-Rui Suen
dc.contributor.author蘇品睿zh_TW
dc.date.accessioned2021-06-15T12:27:03Z-
dc.date.available2019-12-01
dc.date.copyright2016-10-14
dc.date.issued2016
dc.date.submitted2016-08-09
dc.identifier.citation1. Sharon, N.; Lis, H., Lectins as cell recognition molecules. Science 1989, 246, (4927), 227-34.
2. Disney, M. D.; Seeberger, P. H., The use of carbohydrate microarrays to study carbohydrate-cell interactions and to detect pathogens. Chem Biol 2004, 11, (12), 1701-7.
3. Nimrichter, L.; Gargir, A.; Gortler, M.; Altstock, R. T.; Shtevi, A.; Weisshaus, O.; Fire, E.; Dotan, N.; Schnaar, R. L., Intact cell adhesion to glycan microarrays. Glycobiology 2004, 14, (2), 197-203.
4. Blomme, B.; Van Steenkiste, C.; Callewaert, N.; Van Vlierberghe, H., Alteration of protein glycosylation in liver diseases. J Hepatol 2009, 50, (3), 592-603.
5. Ghazarian, H.; Idoni, B.; Oppenheimer, S. B., A glycobiology review: carbohydrates, lectins and implications in cancer therapeutics. Acta Histochem 2011, 113, (3), 236-47.
6. Oppenheimer, S. B., Cellular basis of cancer metastasis: A review of fundamentals and new advances. Acta Histochem 2006, 108, (5), 327-34.
7. Danussi, C.; Coslovi, A.; Campa, C.; Mucignat, M. T.; Spessotto, P.; Uggeri, F.; Paoletti, S.; Colombatti, A., A newly generated functional antibody identifies Tn antigen as a novel determinant in the cancer cell-lymphatic endothelium interaction. Glycobiology 2009, 19, (10), 1056-67.
8. Patsos, G.; Hebbe-Viton, V.; Robbe-Masselot, C.; Masselot, D.; San Martin, R.; Greenwood, R.; Paraskeva, C.; Klein, A.; Graessmann, M.; Michalski, J. C.; Gallagher, T.; Corfield, A., O-glycan inhibitors generate aryl-glycans, induce apoptosis and lead to growth inhibition in colorectal cancer cell lines. Glycobiology 2009, 19, (4), 382-98.
9. Powlesland, A. S.; Hitchen, P. G.; Parry, S.; Graham, S. A.; Barrio, M. M.; Elola, M. T.; Mordoh, J.; Dell, A.; Drickamer, K.; Taylor, M. E., Targeted glycoproteomic identification of cancer cell glycosylation. Glycobiology 2009, 19, (8), 899-909.
10. Shida, K.; Misonou, Y.; Korekane, H.; Seki, Y.; Noura, S.; Ohue, M.; Honke, K.; Miyamoto, Y., Unusual accumulation of sulfated glycosphingolipids in colon cancer cells. Glycobiology 2009, 19, (9), 1018-33.
11. Goetz, J. A.; Mechref, Y.; Kang, P.; Jeng, M. H.; Novotny, M. V., Glycomic profiling of invasive and non-invasive breast cancer cells. Glycoconj J 2009, 26, (2), 117-31.
12. Rek, A.; Krenn, E.; Kungl, A. J., Therapeutically targeting protein-glycan interactions. Br J Pharmacol 2009, 157, (5), 686-94.
13. Danguy, A.; Camby, I.; Kiss, R., Galectins and cancer. Biochim Biophys Acta 2002, 1572, (2-3), 285-93.
14. Balan, V.; Nangia-Makker, P.; Raz, A., Galectins as cancer biomarkers. Cancers (Basel) 2010, 2, (2), 592-610.
15. Giordano, M.; Croci, D. O.; Rabinovich, G. A., Galectins in hematological malignancies. Curr Opin Hematol 2013, 20, (4), 327-35.
16. Abdel-Aziz, H. O.; Murai, Y.; Takasaki, I.; Tabuchi, Y.; Zheng, H. C.; Nomoto, K.; Takahashi, H.; Tsuneyama, K.; Kato, I.; Hsu, D. K.; Liu, F. T.; Hiraga, K.; Takano, Y., Targeted disruption of the galectin-3 gene results in decreased susceptibility to NNK-induced lung tumorigenesis: an oligonucleotide microarray study. J Cancer Res Clin Oncol 2008, 134, (7), 777-88.
17. Ahmed, H.; AlSadek, D. M., Galectin-3 as a Potential Target to Prevent Cancer Metastasis. Clin Med Insights Oncol 2015, 9, 113-21.
18. Hsu, D. K.; Liu, F. T., Regulation of cellular homeostasis by galectins. Glycoconj J 2004, 19, (7-9), 507-15.
19. Patnaik, S. K.; Potvin, B.; Carlsson, S.; Sturm, D.; Leffler, H.; Stanley, P., Complex N-glycans are the major ligands for galectin-1, -3, and -8 on Chinese hamster ovary cells. Glycobiology 2006, 16, (4), 305-17.
20. Honjo, Y.; Nangia-Makker, P.; Inohara, H.; Raz, A., Down-regulation of galectin-3 suppresses tumorigenicity of human breast carcinoma cells. Clin Cancer Res 2001, 7, (3), 661-8.
21. Glinsky, V. V.; Kiriakova, G.; Glinskii, O. V.; Mossine, V. V.; Mawhinney, T. P.; Turk, J. R.; Glinskii, A. B.; Huxley, V. H.; Price, J. E.; Glinsky, G. V., Synthetic galectin-3 inhibitor increases metastatic cancer cell sensitivity to taxol-induced apoptosis in vitro and in vivo. Neoplasia 2009, 11, (9), 901-9.
22. Thijssen, V. L.; Heusschen, R.; Caers, J.; Griffioen, A. W., Galectin expression in cancer diagnosis and prognosis: A systematic review. Biochim Biophys Acta 2015, 1855, (2), 235-47.
23. Takenaka, Y.; Fukumori, T.; Raz, A., Galectin-3 and metastasis. Glycoconj J 2004, 19, (7-9), 543-9.
24. Bidon-Wagner, N.; Le Pennec, J. P., Human galectin-8 isoforms and cancer. Glycoconj J 2004, 19, (7-9), 557-63.
25. Nagy, N.; Bronckart, Y.; Camby, I.; Legendre, H.; Lahm, H.; Kaltner, H.; Hadari, Y.; Van Ham, P.; Yeaton, P.; Pector, J. C.; Zick, Y.; Salmon, I.; Danguy, A.; Kiss, R.; Gabius, H. J., Galectin-8 expression decreases in cancer compared with normal and dysplastic human colon tissue and acts significantly on human colon cancer cell migration as a suppressor. Gut 2002, 50, (3), 392-401.
26. Liu, F. T.; Rabinovich, G. A., Galectins as modulators of tumour progression. Nat Rev Cancer 2005, 5, (1), 29-41.
27. Arbel-Goren, R.; Levy, Y.; Ronen, D.; Zick, Y., Cyclin-dependent kinase inhibitors and JNK act as molecular switches, regulating the choice between growth arrest and apoptosis induced by galectin-8. J Biol Chem 2005, 280, (19), 19105-14.
28. Levy, Y.; Auslender, S.; Eisenstein, M.; Vidavski, R. R.; Ronen, D.; Bershadsky, A. D.; Zick, Y., It depends on the hinge: a structure-functional analysis of galectin-8, a tandem-repeat type lectin. Glycobiology 2006, 16, (6), 463-76.
29. Carcamo, C.; Pardo, E.; Oyanadel, C.; Bravo-Zehnder, M.; Bull, P.; Caceres, M.; Martinez, J.; Massardo, L.; Jacobelli, S.; Gonzalez, A.; Soza, A., Galectin-8 binds specific beta1 integrins and induces polarized spreading highlighted by asymmetric lamellipodia in Jurkat T cells. Exp Cell Res 2006, 312, (4), 374-86.
30. Hadari, Y. R.; Arbel-Goren, R.; Levy, Y.; Amsterdam, A.; Alon, R.; Zakut, R.; Zick, Y., Galectin-8 binding to integrins inhibits cell adhesion and induces apoptosis. J Cell Sci 2000, 113 ( Pt 13), 2385-97.
31. Ideo, H.; Seko, A.; Ishizuka, I.; Yamashita, K., The N-terminal carbohydrate recognition domain of galectin-8 recognizes specific glycosphingolipids with high affinity. Glycobiology 2003, 13, (10), 713-23.
32. Ideo, H.; Matsuzaka, T.; Nonaka, T.; Seko, A.; Yamashita, K., Galectin-8-N-domain recognition mechanism for sialylated and sulfated glycans. J Biol Chem 2011, 286, (13), 11346-55.
33. Carlsson, S.; Oberg, C. T.; Carlsson, M. C.; Sundin, A.; Nilsson, U. J.; Smith, D.; Cummings, R. D.; Almkvist, J.; Karlsson, A.; Leffler, H., Affinity of galectin-8 and its carbohydrate recognition domains for ligands in solution and at the cell surface. Glycobiology 2007, 17, (6), 663-76.
34. Stowell, S. R.; Arthur, C. M.; Slanina, K. A.; Horton, J. R.; Smith, D. F.; Cummings, R. D., Dimeric Galectin-8 induces phosphatidylserine exposure in leukocytes through polylactosamine recognition by the C-terminal domain. J Biol Chem 2008, 283, (29), 20547-59.
35. Hirabayashi, J.; Hashidate, T.; Arata, Y.; Nishi, N.; Nakamura, T.; Hirashima, M.; Urashima, T.; Oka, T.; Futai, M.; Muller, W. E.; Yagi, F.; Kasai, K., Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. Biochim Biophys Acta 2002, 1572, (2-3), 232-54.
36. Tateno, H.; Nakamura-Tsuruta, S.; Hirabayashi, J., Frontal affinity chromatography: sugar-protein interactions. Nat Protoc 2007, 2, (10), 2529-37.
37. Oyelaran, O.; Gildersleeve, J. C., Glycan arrays: recent advances and future challenges. Curr Opin Chem Biol 2009, 13, (4), 406-13.
38. Markova, V.; Smetana, K., Jr.; Jenikova, G.; Lachova, J.; Krejcirikova, V.; Poplstein, M.; Fabry, M.; Brynda, J.; Alvarez, R. A.; Cummings, R. D.; Maly, P., Role of the carbohydrate recognition domains of mouse galectin-4 in oligosaccharide binding and epitope recognition and expression of galectin-4 and galectin-6 in mouse cells and tissues. Int J Mol Med 2006, 18, (1), 65-76.
39. Song, X.; Xia, B.; Stowell, S. R.; Lasanajak, Y.; Smith, D. F.; Cummings, R. D., Novel fluorescent glycan microarray strategy reveals ligands for galectins. Chem Biol 2009, 16, (1), 36-47.
40. Cova, M.; Oliveira-Silva, R.; Ferreira, J. A.; Ferreira, R.; Amado, F.; Daniel-da-Silva, A. L.; Vitorino, R., Glycoprotein enrichment method using a selective magnetic nano-probe platform (MNP) functionalized with lectins. Methods Mol Biol 2015, 1243, 83-100.
41. Rosenberger, I.; Strauss, A.; Dobiasch, S.; Weis, C.; Szanyi, S.; Gil-Iceta, L.; Alonso, E.; Gonzalez Esparza, M.; Gomez-Vallejo, V.; Szczupak, B.; Plaza-Garcia, S.; Mirzaei, S.; Israel, L. L.; Bianchessi, S.; Scanziani, E.; Lellouche, J. P.; Knoll, P.; Werner, J.; Felix, K.; Grenacher, L.; Reese, T.; Kreuter, J.; Jimenez-Gonzalez, M., Targeted diagnostic magnetic nanoparticles for medical imaging of pancreatic cancer. J Control Release 2015, 214, 76-84.
42. Lu, Y. W.; Chien, C. W.; Lin, P. C.; Huang, L. D.; Chen, C. Y.; Wu, S. W.; Han, C. L.; Khoo, K. H.; Lin, C. C.; Chen, Y. J., BAD-lectins: boronic acid-decorated lectins with enhanced binding affinity for the selective enrichment of glycoproteins. Anal Chem 2013, 85, (17), 8268-76.
43. Mellacheruvu, D.; Wright, Z.; Couzens, A. L.; Lambert, J. P.; St-Denis, N. A.; Li, T.; Miteva, Y. V.; Hauri, S.; Sardiu, M. E.; Low, T. Y.; Halim, V. A.; Bagshaw, R. D.; Hubner, N. C.; Al-Hakim, A.; Bouchard, A.; Faubert, D.; Fermin, D.; Dunham, W. H.; Goudreault, M.; Lin, Z. Y.; Badillo, B. G.; Pawson, T.; Durocher, D.; Coulombe, B.; Aebersold, R.; Superti-Furga, G.; Colinge, J.; Heck, A. J.; Choi, H.; Gstaiger, M.; Mohammed, S.; Cristea, I. M.; Bennett, K. L.; Washburn, M. P.; Raught, B.; Ewing, R. M.; Gingras, A. C.; Nesvizhskii, A. I., The CRAPome: a contaminant repository for affinity purification-mass spectrometry data. Nat Methods 2013, 10, (8), 730-6.
44. Lin, P. C.; Chou, P. H.; Chen, S. H.; Liao, H. K.; Wang, K. Y.; Chen, Y. J.; Lin, C. C., Ethylene glycol-protected magnetic nanoparticles for a multiplexed immunoassay in human plasma. Small 2006, 2, (4), 485-9.
45. Zeeberg, B. R.; Feng, W.; Wang, G.; Wang, M. D.; Fojo, A. T.; Sunshine, M.; Narasimhan, S.; Kane, D. W.; Reinhold, W. C.; Lababidi, S.; Bussey, K. J.; Riss, J.; Barrett, J. C.; Weinstein, J. N., GoMiner: a resource for biological interpretation of genomic and proteomic data. Genome Biol 2003, 4, (4), R28.
46. Moon, J. W.; Lee, S. K.; Lee, Y. W.; Lee, J. O.; Kim, N.; Lee, H. J.; Seo, J. S.; Kim, J.; Kim, H. S.; Park, S. H., Alcohol induces cell proliferation via hypermethylation of ADHFE1 in colorectal cancer cells. BMC Cancer 2014, 14, 377.
47. Helenius, A.; Aebi, M., Intracellular functions of N-linked glycans. Science 2001, 291, (5512), 2364-9.
48. Troncoso, M. F.; Ferragut, F.; Bacigalupo, M. L.; Cardenas Delgado, V. M.; Nugnes, L. G.; Gentilini, L.; Laderach, D.; Wolfenstein-Todel, C.; Compagno, D.; Rabinovich, G. A.; Elola, M. T., Galectin-8: a matricellular lectin with key roles in angiogenesis. Glycobiology 2014, 24, (10), 907-14.
49. Chen, R.; Jiang, X.; Sun, D.; Han, G.; Wang, F.; Ye, M.; Wang, L.; Zou, H., Glycoproteomics analysis of human liver tissue by combination of multiple enzyme digestion and hydrazide chemistry. J Proteome Res 2009, 8, (2), 651-61.
50. Priglinger, C. S.; Szober, C. M.; Priglinger, S. G.; Merl, J.; Euler, K. N.; Kernt, M.; Gondi, G.; Behler, J.; Geerlof, A.; Kampik, A.; Ueffing, M.; Hauck, S. M., Galectin-3 induces clustering of CD147 and integrin-beta1 transmembrane glycoprotein receptors on the RPE cell surface. PLoS One 2013, 8, (7), e70011.
51. Cvejic, D.; Savin, S.; Golubovic, S.; Paunovic, I.; Tatic, S.; Havelka, M., Galectin-3 and carcinoembryonic antigen expression in medullary thyroid carcinoma: possible relation to tumour progression. Histopathology 2000, 37, (6), 530-5.
52. Sarafian, V.; Jadot, M.; Foidart, J. M.; Letesson, J. J.; Van den Brule, F.; Castronovo, V.; Wattiaux, R.; Coninck, S. W., Expression of Lamp-1 and Lamp-2 and their interactions with galectin-3 in human tumor cells. Int J Cancer 1998, 75, (1), 105-11.
53. Mohebiany, A. N.; Nikolaienko, R. M.; Bouyain, S.; Harroch, S., Receptor-type tyrosine phosphatase ligands: looking for the needle in the haystack. FEBS J 2013, 280, (2), 388-400.
54. Fukumori, T.; Takenaka, Y.; Oka, N.; Yoshii, T.; Hogan, V.; Inohara, H.; Kanayama, H. O.; Kim, H. R.; Raz, A., Endogenous galectin-3 determines the routing of CD95 apoptotic signaling pathways. Cancer Res 2004, 64, (10), 3376-9.
55. Koths, K.; Taylor, E.; Halenbeck, R.; Casipit, C.; Wang, A., Cloning and characterization of a human Mac-2-binding protein, a new member of the superfamily defined by the macrophage scavenger receptor cysteine-rich domain. J Biol Chem 1993, 268, (19), 14245-9.
56. Nonaka, M.; Ma, B. Y.; Imaeda, H.; Kawabe, K.; Kawasaki, N.; Hodohara, K.; Kawasaki, N.; Andoh, A.; Fujiyama, Y.; Kawasaki, T., Dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN) recognizes a novel ligand, Mac-2-binding protein, characteristically expressed on human colorectal carcinomas. J Biol Chem 2011, 286, (25), 22403-13.
57. Dumic, J.; Dabelic, S.; Flogel, M., Galectin-3: an open-ended story. Biochim Biophys Acta 2006, 1760, (4), 616-35.
58. Kuipers, E. J.; Grady, W. M.; Lieberman, D.; Seufferlein, T.; Sung, J. J.; Boelens, P. G.; van de Velde, C. J.; Watanabe, T., Colorectal cancer. Nat Rev Dis Primers 2015, 1, 15065.
59. Holst, S.; Deuss, A. J.; van Pelt, G. W.; van Vliet, S. J.; Garcia-Vallejo, J. J.; Koeleman, C. A.; Deelder, A. M.; Mesker, W. E.; Tollenaar, R. A.; Rombouts, Y.; Wuhrer, M., N-glycosylation Profiling of Colorectal Cancer Cell Lines Reveals Association of Fucosylation with Differentiation and Caudal Type Homebox 1 (CDX1)/Villin mRNA Expression. Mol Cell Proteomics 2016, 15, (1), 124-40.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49973-
dc.description.abstract半乳糖凝集素是一種會結合β-半乳醣的凝集素,透過其蛋白質與醣辨認及蛋白質間的交互作用,在免疫反應及癌症過程中扮演了重要的角色。由於半乳糖凝集素與其結合的蛋白質之間的交互作用力相當微弱,在特定的生理及病理的條件下,直接鑑定出內生性的結合蛋白質及辨認的醣型結構相當不容易。有著兩個不同認醣區域的第八型半乳糖凝集素 (Galectin-8, Gal-8),目前只有被報導過會抑制細胞黏附、影響細胞移動及造成細胞程式凋亡作用。兩個認醣區域對於不同寡糖的解離常數已經被測量得到。然而,不像已被透徹研究的第一型及第三型半乳糖凝集素,詳細的調控機制、直接辨認的醣型以及重要的調控信息傳遞仍是未知。
在此我們發展了一種策略,利基於奈米碳針的親和純化結合質譜分析以研究第八型半乳糖凝集素於大腸直腸癌中的交互作用網及醣型的辨認。製備出鍵結著全長、N端認醣區域、及C端認醣區域第八型半乳糖凝集素的磁性奈米碳針,用以純化他們的交互作用蛋白質。透過CRAPome資料庫、控制組奈米碳針及膜蛋白與細胞間質的篩選,屏除非專一性吸附的蛋白質可得到真正交互作用的蛋白質。總計289個蛋白質被鑑定為可信的交互作用分子,包含許多文獻同樣報導過的交互作用蛋白質,例如與細胞黏附及細胞間交互作用有關的整合素族群、CD166及CD44。第八型半乳糖凝集素可能辨認的醣胜肽可以透過胜肽層級的交互作用實驗獲得,並配合切醣酵素水解或完整的醣基結構鑑定。總計585條醣胜肽 (157種蛋白質) 被鑑定,其中有509條醣胜肽含有N-乙醯乳糖胺或唾液酸化N-乙醯乳糖胺。與蛋白質層級的實驗結果交集後,共273條醣胜肽 (36種蛋白質) 被鑑定,其中包含一個與腫瘤生成相關的酪氨酸受體—表皮生長因子受體,被發現與第八型半乳糖凝集素交互作用的N-醣基團,是一個在N568位置上帶有核心岩藻糖基化及唾液酸化的混合醣型。在第八型半乳糖凝集素刺激下,表皮生長因子受體在與受體二聚化及泛素化作用相關的位置—T693及Y1068皆有磷酸化表現暫時性改變的現象,而其信息下游的STAT3同樣也有改變。這說明了第八型半乳糖凝集素調控大腸直腸癌,可能是透過胞外的蛋白質與表皮生長因子受體的醣類交互作用,再刺激自我磷酸化以及下游信息傳遞。我們展示了基於奈米碳針的親和純化結合質譜分析的策略可以有效的鑑定交互作用分子以及醣基結構,這些將可以提供我們許多資訊,以了解胞外的半乳糖凝集素的醣類辨識作用。
zh_TW
dc.description.abstractGalectins, β-galactosides-binding lectins, play important roles in immune response and cancer biology. Due to the weak interaction between galectins and carbohydrates on recognized glycoproteins, it is challenging to directly identify endogenous binding partners and the recognition glycotope under physiological and pathological conditions. Galectin-8 (Gal-8) with two tandem-repeat types of carbohydrate-recognition domains (CRD) has been reported for inhibition of cell adhesion, influence migration, and induced apoptosis. The binding oligosaccharides and the dissociation constants with N- and C-terminal CRDs of Gal-8 have been determined. Unlike the well-studied galectin-1 (Gal-1) and galectin-3 (Gal-3), however, the direct binding partners and recognition glycotopes critical to Gal-8 signaling are still unclear.
In this study, we developed a nanoprobe-based affinity purification strategy combined with mass spectrometry analysis to study the interactome and glycotope recognition of Gal-8 in colorectal cancer cells. Full length, N- and C-terminal Gal-8@MNP nanoprobes as well as BSA@MNP were fabricated to purify the Gal-8 binding proteins. True binding proteins were determined by filtering out non-specific binding proteins from proteins extracted from BSA@MNP and CRAPome database as well as annotation of plasma membrane protein and extracellular matrix by GO database. Total of 289 proteins were identified as confident Gal-8 interacting partners, including identification of several reported Gal-8 binding partners, such as integrin family, CD166 and CD44, which are known to relate to cell adhesion and cell-cell interaction. The potential glycopeptides recognized by Gal-8 was analyzed by peptide level interaction assay, following by de-glycosyalted or intact glycotope characterization. A total of 585 intact glycopeptides corresponding to 157 glycoproteins were found, among them 509 glycopeptides contained LacNAc/sialo-LacNAc. Correlated and overlaid with protein level results, total of 36 glycoproteins (273 intact glycopeptides) were identified, including the well-known tumorigenesis-related receptor tyrosine kinase, epidermal growth factor receptor (EGFR), with hybrid-type glycan with core-fucosylation and sialylation on N568. Further experiment upon recombinant Gal-8 stimulation induced temporal alteration of the phosphorylation on T693 and Y1068 of EGFR, which sites have been reported to relate to receptor dimerization and ubiquitination, and its downstream substrates STAT3. This suggested that Gal-8 may regulate CRC tumorigeneses through extracellular interaction with EGFR can further induce autophosphorylation and its intracellular signaling transduction. We demonstrated that nanoprobe-based affinity purification mass spectrometry strategy is useful to identify interacting partners and glycotopes to provide information to understand the extracellular galectin recognition.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:27:03Z (GMT). No. of bitstreams: 1
ntu-105-R03223146-1.pdf: 3104309 bytes, checksum: 6a86596e08b2eb806ecfeeedc5292a4b (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents謝誌 I
摘要 II
Abstract IV
Table of contents VI
List of figures IX
List of tables XI
Abbreviation 1
1. Introduction 3
1.1 Biological function of galectin 3
1.2 Galectin-8 (Gal-8) 5
1.3 Methodology for study of protein-carbohydrate interaction 6
1.4 Objectives 8
2. Materials and Methods: 9
2.1 Materials 9
2.1.1 Chemicals 9
2.1.2 Apparatus 11
2.2 Methods 12
2.2.1 Recombinant galectin-8 (Gal-8) 12
2.2.2 HT-29 and DLD-1 cell survival rate assay 13
2.2.3 Synthesis of protein (G8FL, G8N, G8C, and BSA)-conjugated MNP 14
2.2.4 Membrane protein extraction 15
2.2.5 In-solution digestion 16
2.2.6 Nanoprobe-based affinity purification (NBAP) 17
2.2.7 LTQ-Orbitrap Velos LC-MS/MS 18
2.2.8 Protein identification by Proteome Discoverer and Mascot software 20
2.2.9 Data analysis 21
2.2.10 Glycosidase treatment and validation of protein-carbohydrate interaction 22
2.2.11 Gal-8 induced signaling 23
2.2.12 SDS-PAGE and Western blotting 24
3. Results and discussion 25
3.1 Workflow of nanoprobe-based affinity precipitation-mass spectrometry (NBAP-MS) strategy for identification of Gal-8-interacting glycopartners 25
3.2 Gal-8 can inhibit cell growth and survival 28
3.3 Identification of Gal-8-binding glycoproteins from protein level 29
3.4 Identification of Gal-8-binding glycosylation sites 34
3.5 Identifying intact glycopeptides of Gal-8-binding partners 36
3.6 Characterization of Gal-8 recognizing glycopeptides in colorectal cancer cells 39
3.7 Validation of the glycosylation-dependent interaction between Gal-8 and EGFR 41
3.8 Gal-8 can induce EGFR phosphorylation signaling 43
4. Conclusion 45
5. References 47
6. Figures 52
7. Tables 65
dc.language.isoen
dc.subject奈米碳針zh_TW
dc.subject第八型半乳糖凝集素zh_TW
dc.subject質譜儀zh_TW
dc.subject大腸直腸癌zh_TW
dc.subject醣蛋白zh_TW
dc.subject大腸直腸癌zh_TW
dc.subject醣蛋白zh_TW
dc.subject奈米碳針zh_TW
dc.subject第八型半乳糖凝集素zh_TW
dc.subject質譜儀zh_TW
dc.subjectgalectin-8en
dc.subjectcolorectal canceren
dc.subjectglycoproteinen
dc.subjectnanoprobeen
dc.subjectgalectin-8en
dc.subjectmass spectrometryen
dc.subjectcolorectal canceren
dc.subjectglycoproteinen
dc.subjectnanoprobeen
dc.subjectmass spectrometryen
dc.title奈米探針結合親和純化質譜技術應用於第八型半乳糖凝集素結合的醣蛋白解析zh_TW
dc.titleNanoprobe-based affinity purification mass spectrometry (NBAP-MS) strategy for deciphering galectin-8-binding glycoproteinsen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee韓嘉莉(Chia-Li Han),戴桓青(Hwan-Ching Tai)
dc.subject.keyword質譜儀,第八型半乳糖凝集素,奈米碳針,醣蛋白,大腸直腸癌,zh_TW
dc.subject.keywordmass spectrometry,galectin-8,nanoprobe,glycoprotein,colorectal cancer,en
dc.relation.page90
dc.identifier.doi10.6342/NTU201601521
dc.rights.note有償授權
dc.date.accepted2016-08-10
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
3.03 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved