Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49972
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳立仁(Li-Jen Chen)
dc.contributor.authorChe-Kang Chuen
dc.contributor.author朱哲慷zh_TW
dc.date.accessioned2021-06-15T12:27:01Z-
dc.date.available2017-08-24
dc.date.copyright2016-08-24
dc.date.issued2016
dc.date.submitted2016-08-09
dc.identifier.citation[1] E.D. Sloan, Fundamental principles and applications of natural gas hydrates, Nature, 426 (2003) 353-359.
[2] E.D. Sloan, C. Koh, Clathrate hydrates of natural gases, third edition, CRC Press, Boca Raton, 2007.
[3] E.D. Sloan, F. Fleyfel, Hydrate dissociation enthalpy and guest size, Fluid Phase Equilibria, 76 (1992) 123-140.
[4] H.-J. Ng, D.B. Robinson, Hydrate formation in systems containing methane, ethane, propane, carbon dioxide or hydrogen sulfide in the presence of methanol, Fluid Phase Equilib., 21 (1985) 145-155.
[5] A.H. Mohammadi, W. Aftal, D. Richon, Experimental data and predictions of dissociation conditions for ethane and propane simple hydrates in the presence of distilled water and methane, ethane, propane, and carbon dioxide simple hydrates in the presence of ethanol aqueous solutions, Journal of Chemical and Engineering Data, 53 (2008) 73-76.
[6] A.H. Mohammadi, W. Afzal, D. Richon, Experimental data and predictions of dissociation conditions for ethane and propane simple hydrates in the presence of methanol, ethylene glycol, and triethylene glycol aqueous solutions, Journal of Chemical and Engineering Data, 53 (2008) 683-686.
[7] Y.P. Handa, Heat capacities in the range 95 to 260 K and enthalpies of fusion for structure-II clathrate hydrates of some cyclic ethers, J. Chem. Thermodyn., 17 (1985) 201-208.
[8] A.T. Trueba, L.J. Rovetto, L.J. Florusse, M.C. Kroon, C.J. Peters, Phase equilibrium measurements of structure II clathrate hydrates of hydrogen with various promoters, Fluid Phase Equilib., 307 (2011) 6-10.
[9] Y.T. Seo, S.P. Kang, H. Lee, Experimental determination and thermodynamic modeling of methane and nitrogen hydrates in the presence of THF, propylene oxide, 1,4-dioxane and acetone, Fluid Phase Equilib., 189 (2001) 99-110.
[10] M.M. Mooijer-van den Heuvel, C.J. Peters, J.D. Arons, Influence of Water Insoluble Organic Components on the Gas Hydrate Equilibrium Conditions of Methane, Fluid Phase Equilibr, 172 (2000) 73-91.
[11] R.M. de Deugd, M.D. Jager, J.D. Arons, Mixed hydrates of methane and water-soluble hydrocarbons modeling of empirical results, AIChE Journal, 47 (2001) 693-704.
[12] E.D. Sloan, C. Koh, A.K. Sum, A.L. Ballard, J. Creek, M. Eaton, J. Lachance, N. Mcmullen, T. Palermo, G. Shoup, L. Talley, Natural gas hydrates in flow assurance, Gulf Professional Publishing, Houston, 2010.
[13] D. Dalmazzone, N. Hamed, C. Dalmazzone, L. Rousseau, Application of high pressure DSC to the kinetics of formation of methane hydrate in water-in-oil emulsion, Journal of Thermal Analysis and Calorimetry, 85 (2006) 361-368.
[14] B. Fouconnier, L. Komunjer, M. Ollivon, P. Lesieur, G. Keller, D. Clausse, Study of CCl(3)F hydrate formation and dissociation in W/O emulsion by differential scanning calorimetry and X-ray diffraction, Fluid Phase Equilibr, 250 (2006) 76-82.
[15] D. Dalmazzone, N. Hamed, C. Dalmazzone, DSC measurements and modelling of the kinetics of methane hydrate formation in water-in-oil emulsion, Chem Eng Sci, 64 (2009) 2020-2026.
[16] M. Nakajima, R. Ohmura, Y.H. Mori, Clathrate Hydrate Formation from Cyclopentane-in-Water Emulsions, Industrial & Engineering Chemistry Research, 47 (2008) 8933-8939.
[17] P. Le Parlouer, C. Dalmazzone, B. Herzhaft, L. Rousseau, C. Mathonat, Characterisation of gas hydrates formation using a new high pressure MICRO-DSC, J Therm Anal Calorim, 78 (2004) 165-172.
[18] Y.F. Zhang, P.G. Debenedetti, R.K. Prud'homme, B.A. Pethica, Differential scanning calorimetry studies of clathrate hydrate formation, J Phys Chem B, 108 (2004) 16717-16722.
[19] H. Davy, On a Combination of Oxymuriatic Gas and Oxygene Gas, Philosophical Transactions of the Royal Society, 101 (1811) 155-162.
[20] Y.P. Handa, Compositions, enthalpies of dissociation, and heat-capacities in the range 85-K to 270-K for clathrate hydrates of methane, ethane, and propane, and enthalpy of dissociation of isobutane hydrate, as determined by a heat-flow calorimeter, Journal of Chemical Thermodynamics, 18 (1986) 915-921.
[21] D.N. Glew, N.S. Rath, Variable composition of chlorine and ethylene oxide clathrate hydrates, Journal of Chemical Physics, 44 (1966) 1710-&.
[22] F. de, Composition of gas hydrates, C. R. Hebd. Seances Acad. Sci., 134 (1902) 835-838.
[23] E.G. Hammerschmidt, Formation of gas hydrates in natural gas transmission lines, Ind. Eng. Chem., 26 (1934) 851-855.
[24] W. Deaton, E. Frost Jr, Gas hydrates and their relation to the operation of natural-gas pipe lines, in, Bureau of Mines, Amarillo, TX (USA). Helium Research Center, 1946.
[25] D.C. Bond, N.B. Russell, Effect of antifreeze agents on the formation of hydrogen sulphide hydrate, Transactions of the AIME, 179 (1949) 192-198.
[26] Riki Kobayashi, D.L. Katz, Methane hydrate at high pressure, Journal of Petroleum Technology, 1 (1949) 66-70.
[27] M.A. Kelland, History of the development of low dosage hydrate inhibitors, Energy & Fuels, 20 (2006) 825-847.
[28] D.B. Robinson, H.J. Ng, Hydrate formation and inhibition in gas or gas condensate streams, Journal of Canadian Petroleum Technology, 25 (1986) 26-30.
[29] C.B. Argo, R.A. Blain, C.G. Osborne, I.D. Priestley, Commercial deployment of low-dosage hydrate inhibitors in a southern North Sea 69 km wet-gas subsea pipeline, SPE Production & Facilities, 15 (2000) 130-134.
[30] I. Chatti, A. Delahaye, L. Fournaison, J.P. Petitet, Benefits and drawbacks of clathrate hydrates: a review of their areas of interest, Energy Conversion and Management, 46 (2005) 1333-1343.
[31] W. Afkal, A.H. Mohammadi, D. Richon, Experimental measurements and predictions of dissociation conditions for carbon dioxide and methane hydrates in the presence of triethylene glycol aqueous solutions, Journal of Chemical and Engineering Data, 52 (2007) 2053-2055.
[32] P.G. Lafond, K.A. Olcott, E.D. Sloan, C.A. Koh, A.K. Sum, Measurements of methane hydrate equilibrium in systems inhibited with NaCl and methanol, Journal of Chemical Thermodynamics, 48 (2012) 1-6.
[33] C. Blanc, J. Tournierlasserve, Controlling hydrates in high-pressure flowlines, World Oil, 211 (1990) 63.
[34] C. Giavarini, F. Maccioni, Self-preservation at low pressures of methane hydrates with various gas contents, Industrial & Engineering Chemistry Research, 43 (2004) 6616-6621.
[35] J. Javanmardi, K. Nasrifar, S.H. Najibi, M. Moshfeghian, Economic evaluation of natural gas hydrate as an alternative for natural gas transportation, Appl. Therm. Eng., 25 (2005) 1708-1723.
[36] B.K. Abdalla, N.A. Abdullatef, Simulation and economic evaluation of natural gas hydrates NGH as an alternative to liquefied natural gas LNG, Catal. Today, 106 (2005) 256-258.
[37] H. Kanda, Economic study on natural gas transportation with natural gas hydrate (NGH) pellets, in: 23rd world gas conference, Amsterdam, 2006.
[38] T. Nogami, N. Oya, H. Ishida, H. Matsumoto, Development of natural gas ocean transportation chain by means of natural gas hydrate (NGH), in: Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008), 2008.
[39] S. Watanabe, S. Takahashi, H. Mizubayashi, S. Murata, H. Murakami, A demonstration project of NGH land transportation system, in: Proceedings of the 6th international conference on gas hydrates, 2008, pp. 6-10.
[40] A. Falenty, W.F. Kuhs, M. Glockzin, G. Rehder, 'Self-Preservation' of CH4 Hydrates for Gas Transport Technology: Pressure-Temperature Dependence and Ice Microstructures, Energy & Fuels, 28 (2014) 6275-6283.
[41] H. Mimachi, S. Takeya, A. Yoneyama, K. Hyodo, T. Takeda, Y. Gotoh, T. Murayama, Natural gas storage and transportation within gas hydrate of smaller particle: Size dependence of self-preservation phenomenon of natural gas hydrate, Chemical Engineering Science, 118 (2014) 208-213.
[42] J. van der Waals, J. Platteeuw, Clathrate solutions, Adv. Chem. Phys, 2 (1959) 1-57.
[43] S.P. Kang, H. Lee, Recovery of CO2 from flue gas using gas hydrate: Thermodynamic verification through phase equilibrium measurements, Environ Sci Technol, 34 (2000) 4397-4400.
[44] A.H. Mohammadi, D. Richon, Clathrate Hydrates of Cyclohexane plus Hydrogen Sulfide and Cyclohexane plus Methane: Experimental Measurements of Dissociation Conditions, J Chem Eng Data, 55 (2010) 1053-1055.
[45] A. Arora, S.S. Cameotra, R. Kumar, C. Balomajumder, A.K. Singh, B. Santhakumari, P. Kumar, S. Laik, Biosurfactant as a Promoter of Methane Hydrate Formation: Thermodynamic and Kinetic Studies, Scientific Reports, 6 (2016) 13.
[46] J.P. Torre, D. Haillot, S. Rigal, R.D. Lima, C. Dicharry, J.P. Bedecarrats, 1,3 Dioxolane versus tetrahydrofuran as promoters for CO2-hydrate formation: Thermodynamics properties, and kinetics in presence of sodium dodecyl sulfate, Chemical Engineering Science, 126 (2015) 688-697.
[47] M. Aliabadi, A. Rasoolzadeh, F. Esmaeilzadeh, A. Alamdari, Experimental study of using CuO nanoparticles as a methane hydrate promoter, Journal of Natural Gas Science and Engineering, 27 (2015) 1518-1522.
[48] Q. Zhang, G.J. Chen, Q. Huang, C.Y. Sun, X.Q. Guo, Q.L. Ma, Hydrate formation conditions of a hydrogen plus methane gas mixture in tetrahydrofuran plus water, Journal of Chemical and Engineering Data, 50 (2005) 234-236.
[49] Y.H. Bi, T.W. Guo, T.Y. Zhu, L. Zhang, L.G. Chen, Influences of additives on the gas hydrate cool storage process in a new gas hydrate cool storage system, Energy Conversion and Management, 47 (2006) 2974-2982.
[50] J.S. Zhang, J.W. Lee, Equilibrium of Hydrogen plus Cyclopentane and Carbon Dioxide plus Cyclopentane Binary Hydrates, Journal of Chemical and Engineering Data, 54 (2009) 659-661.
[51] C.Y. Jones, J.S. Zhang, J.W. Lee, Isotope effect on eutectic and hydrate melting temperatures in the water-thf system, Journal of Thermodynamics, 2010 (2010) 6.
[52] D. Dalmazzone, M. Kharrat, V. Lachet, B. Fouconnier, D. Clausse, DSC and PVT measurements, J. Therm. Anal. Calorim., 70 (2002) 493-505.
[53] S.R. Davies, J.W. Lachance, E.D. Sloan, C.A. Koh, High-Pressure Differential Scanning Calorimetry Measurements of the Mass Transfer Resistance across a Methane Hydrate Film as a Function of Time and Subcooling, Ind. Eng. Chem. Res., 49 (2010) 12319-12326.
[54] S.R. Davies, K.C. Hester, J.W. Lachance, C.A. Koh, E.D. Sloan, Studies of hydrate nucleation with high pressure differential scanning calorimetry, Chemical Engineering Science, 64 (2009) 370-375.
[55] Y.T. Seo, H. Lee, C-13 NMR analysis and gas uptake measurements of pure and mixed gas hydrates: Development of natural gas transport and storage method using gas hydrate, Korean Journal of Chemical Engineering, 20 (2003) 1085-1091.
[56] Y.H. Hu, E. Ruckenstein, Clathrate hydrogen hydrate - A promising material for hydrogen storage, Angewandte Chemie-International Edition, 45 (2006) 2011-2013.
[57] R. Kobayashi, H. Withrow, G. Williams, D. Katz, Gas hydrate formation with brine and ethanol solutions, in: Proceeding of the 30th Annual Convention, Natural Gasoline Association of America, 1951, pp. 27-31.
[58] A.H. Mohammadi, I. Kraouti, D. Richon, Experimental Data and Predictions of Dissociation Conditions for Methane, Ethane, Propane, and Carbon Dioxide Simple Hydrates in the Presence of Glycerol Aqueous Solutions, Industrial & Engineering Chemistry Research, 47 (2008) 8492-8495.
[59] Q. Chen, Y. Yu, P. Zeng, W. Yang, Q. Liang, X. Peng, Y. Liu, Y. Hu, Effect of 1-butyl-3-methylimidazolium tetrafluoroborate on the formation rate of CO2 hydrate, Journal of Natural Gas Chemistry, 17 (2008) 264-267.
[60] C.W. Xiao, H. Adidharma, Dual function inhibitors for methane hydrate, Chemical Engineering Science, 64 (2009) 1522-1527.
[61] C.W. Xiao, N. Wibisono, H. Adidharma, Dialkylimidazolium halide ionic liquids as dual function inhibitors for methane hydrate, Chemical Engineering Science, 65 (2010) 3080-3087.
[62] K.S. Kim, J.W. Kang, S.P. Kang, Tuning ionic liquids for hydrate inhibition, Chemical Communications, 47 (2011) 6341-6343.
[63] X.S. Li, Y.J. Liu, Z.Y. Zeng, Z.Y. Chen, G. Li, H.J. Wu, Equilibrium hydrate formation conditions for the mixtures of methane plus ionic liquids plus water, Journal of Chemical and Engineering Data, 56 (2011) 119-123.
[64] K. Tumba, P. Reddy, P. Naidoo, D. Ramjugernath, A. Eslamimanesh, A.H. Mohammadi, D. Richon, Phase equilibria of methane and carbon dioxide clathrate hydrates in the presence of aqueous solutions of tributylmethylphosphonium methylsulfate ionic liquid, Journal of Chemical and Engineering Data, 56 (2011) 3620-3629.
[65] B. Partoon, N.M.S. Wong, K.M. Sabil, K. Nasrifar, M.R. Ahmad, A study on thermodynamics effect of [EMIM]-Cl and [OH-C2MIM]-Cl on methane hydrate equilibrium line, Fluid Phase Equilib., 337 (2013) 26-31.
[66] A.R. Richard, H. Adidharma, The performance of ionic liquids and their mixtures in inhibiting methane hydrate formation, Chemical Engineering Science, 87 (2013) 270-276.
[67] L. Keshavarz, J. Javanmardi, A. Eslamimanesh, A.H. Mohammadi, Experimental measurement and thermodynamic modeling of methane hydrate dissociation conditions in the presence of aqueous solution of ionic liquid, Fluid Phase Equilibria, 354 (2013) 312-318.
[68] M. Zare, A. Haghtalab, A.N. Ahmadi, K. Nazari, Experiment and thermodynamic modeling of methane hydrate equilibria in the presence of aqueous imidazolium-based ionic liquid solutions using electrolyte cubic square well equation of state, Fluid Phase Equilibria, 341 (2013) 61-69.
[69] K.M. Sabil, O. Nashed, B. Lal, L. Ismail, A. Japper-Jaafar, Experimental investigation on the dissociation conditions of methane hydrate in the presence of imidazolium-based ionic liquids, J. Chem. Thermodyn., 84 (2015) 7-13.
[70] S.R. Gough, D.W. Davidson, Composition of Tetrahydrofuran Hydrate and the Effect of Pressure on the Decomposition, Canadian Journal of Chemistry, 49 (1971) 2691-2699.
[71] Y.P. Handa, A calorimetric study of trimethylene oxide and its structure-I and structure-II clathrate hydrates in the temperature-range 85-K to 270-K, Canadian Journal of Chemistry-Revue Canadienne De Chimie, 63 (1985) 68-70.
[72] J.P. Lederhos, A.P. Mehta, G.B. Nyberg, K.J. Warn, E.D. Sloan, Structure H clathrate hydrate equilibria of methane and adamantane, AIChE Journal, 38 (1992) 1045-1048.
[73] B. Tohidi, A. Danesh, A.C. Todd, R.W. Burgass, K.K. Ostergaard, Equilibrium data and thermodynamic modelling of cyclopentane and neopentane hydrates, Fluid Phase Equilibria, 138 (1997) 241-250.
[74] M.M. Mooijer-van den Heuvel, C.J. Peters, J.D. Arons, Influence of water-insoluble organic components on the gas hydrate equilibrium conditions of methane, Fluid Phase Equilibria, 172 (2000) 73-91.
[75] M.M. Mooijer-van den Heuvel, R. Witteman, C.J. Peters, Phase behaviour of gas hydrates of carbon dioxide in the presence of tetrahydropyran, cyclobutanone, cyclohexane and methylcyclohexane, Fluid Phase Equilibria, 182 (2001) 97-110.
[76] A.Y. Manakov, S.V. Goryainov, A.V. Kurnosov, A.Y. Likhacheva, Y.A. Dyadin, E.G. Larionov, Clathrate nature of the high-pressure tetrahydrofuran hydrate phase and some new data on the phase diagram of the tetrahydrofuran-water system at pressures up to 3 GPa, J. Phys. Chem. B, 107 (2003) 7861-7866.
[77] T. Makino, T. Sugahara, K. Ohgaki, Stability Boundaries of Tetrahydrofuran + Water System, Journal of Chemical & Engineering Data, 50 (2005) 2058-2060.
[78] A. Delahaye, L. Fournaison, S. Marinhas, I. Chatti, J.P. Petitet, D. Dalmazzone, W. Furst, Effect of THF on equilibrium pressure and dissociation enthalpy of CO2 hydrates applied to secondary refrigeration, Ind. Eng. Chem. Res., 45 (2006) 391-397.
[79] A.H. Mohammadi, D. Richon, Phase equilibria of clathrate hydrates of tetrahydrofuran plus hydrogen sulfide and tetrahydrofuran plus methane, Ind. Eng. Chem. Res., 48 (2009) 7838-7841.
[80] A.H. Mohammadi, D. Richon, Phase equilibria of clathrate hydrates of methyl cyclopentane, methyl cyclohexane, cyclopentane or cyclohexane plus carbon dioxide, Chemical Engineering Science, 64 (2009) 5319-5322.
[81] T.A. Strobel, C.A. Koh, E.D. Sloan, Thermodynamic predictions of various tetrahydrofuran and hydrogen clathrate hydrates, Fluid Phase Equilibria, 280 (2009) 61-67.
[82] P.C. Kuo, L.J. Chen, S.T. Lin, Y.P. Chen, Measurements for the Dissociation Conditions of Methane Hydrate in the Presence of 2-Methyl-2-propanol, Journal of Chemical and Engineering Data, 55 (2010) 5036-5039.
[83] C.T. Cheng, L.J. Chen, S.T. Lin, M. Tang, P.C. Chen, Y.P. Chen, Measurements for the dissociation conditions of methane hydrate in the presence of 2,5-dihydrofuran and 3,4-dihydro-2H-pyran, Fluid Phase Equilib., 338 (2013) 114-118.
[84] Q.N. Lv, X.S. Li, Z.Y. Chen, J.C. Feng, Phase Equilibrium and Dissociation Enthalpies for Hydrates of Various Water-Insoluble Organic Promoters with Methane, Journal of Chemical and Engineering Data, 58 (2013) 3249-3253.
[85] P.J. Herslund, K. Thomsen, J. Abildskov, N. von Solms, A. Galfre, P. Brantuas, M. Kwaterski, J.M. Herri, Thermodynamic promotion of carbon dioxide-clathrate hydrate formation by tetrahydrofuran, cyclopentane and their mixtures, International Journal of Greenhouse Gas Control, 17 (2013) 397-410.
[86] Y.-W. Juan, M. Tang, L.-J. Chen, S.-T. Lin, P.-C. Chen, Y.-P. Chen, Measurements for the equilibrium conditions of methane hydrate in the presence of cyclopentanone or 4-hydroxy-4-methyl-2-pentanone additives, Fluid Phase Equilib., 386 (2015) 162-167.
[87] J.H. Vanderwaals, J.C. Platteeuw, Validity of clapeyrons equation for phase equilibria involving clathrates, Nature, 183 (1959) 462-462.
[88] J.H. van der Waals, J.C. Platteeuw, Clathrate Solutions, Advances in Chemical Physics, 2 (1959) 1-57.
[89] P. Englezos, CLATHRATE HYDRATES, Industrial & Engineering Chemistry Research, 32 (1993) 1251-1274.
[90] G.D. Holder, S.P. Zetts, N. Pradhan, PHASE-BEHAVIOR IN SYSTEMS CONTAINING CLATHRATE HYDRATES - A REVIEW, Rev. Chem. Eng., 5 (1988) 1-70.
[91] E.D. Sloan, C.A. Koh, Clathrate hydrates of natural gases, Third ed., CRC Press, New York, 2008.
[92] A.L. Ballard, E.D. Sloan, The next generation of hydrate prediction I. Hydrate standard states and incorporation of spectroscopy, Fluid Phase Equilibria, 194 (2002) 371-383.
[93] M.D. Jager, A.L. Ballard, E.D. Sloan, The Next Generation of Hydrate Prediction II. Dedicated Aqueous Phase Fugacity Model for Hydrate Prediction, Fluid Phase Equilibria, 211 (2003) 85-107.
[94] A.L. Ballard, E.D. Sloan, The Next Generation of Hydrate Prediction III. Gibbs Energy Minimization Formalism, Fluid Phase Equilibria, 218 (2004) 15-31.
[95] A.L. Ballard, E.D. Sloan, The Next Generation of Hydrate Prediction IV. A Comparison of Available Hydrate Prediction Programs, Fluid Phase Equilibria, 216 (2004) 257-270.
[96] Y.A. Dyadin, E.Y. Aladko, E.G. Larionov, Decomposition of Methane Hydrates up to 15 kbar, Mendeleev Commun., 7 (1997) 34-35.
[97] S. Nakano, M. Moritoki, K. Ohgaki, High-pressure Phase Equilibrium and Raman Microprobe Spectroscopic Studies on the CO2 Hydrate System, J Chem Eng Data, 43 (1998) 807-810.
[98] M.K. Hsieh, W.Y. Ting, Y.P. Chen, P.C. Chen, S.T. Lin, L.J. Chen, Explicit pressure dependence of the Langmuir adsorption constant in the van der Waals–Platteeuw model for the equilibrium conditions of clathrate hydrates, Fluid Phase Equilib., 325 (2012) 80-89.
[99] G.K. Anderson, Enthalpy of dissociation and hydration number of methane hydrate from the Clapeyron equation, Journal of Chemical Thermodynamics, 36 (2004) 1119-1127.
[100] N. Mayoufi, D. Dalmazzone, W. Furst, A. Delahaye, L. Fournaison, CO2 enclathration in hydrates of peralkyl-(ammonium/phosphonium) salts: Stability conditions and dissociation enthalpies, Journal of Chemical and Engineering Data, 55 (2010) 1271-1275.
[101] K.M. Sabil, G.J. Witkamp, C.J. Peters, Estimations of enthalpies of dissociation of simple and mixed carbon dioxide hydrates from phase equilibrium data, Fluid Phase Equilibria, 290 (2010) 109-114.
[102] P. Skovborg, P. Rasmussen, Comments on - hydrate dissociation enthalpy and guest size, Fluid Phase Equilibria, 96 (1994) 223-231.
[103] J.H. Yoon, Y. Yamamoto, T. Komai, H. Haneda, T. Kawamura, Rigorous approach to the prediction of the heat of dissociation of gas hydrates, Industrial & Engineering Chemistry Research, 42 (2003) 1111-1114.
[104] W. Lin, A. Delahaye, L. Fournaison, Phase equilibrium and dissociation enthalpy for semi-clathrate hydrate of CO2 plus TBAB, Fluid Phase Equilibria, 264 (2008) 220-227.
[105] Y.P. Handa, R.E. Hawkins, J.J. Murray, Calibration and testing of a tian-calvet heat-flow calorimeter enthalpies of fusion and heat-capacities for ice and tetrahydrofuran hydrate in the range 85 to 270-k, Journal of Chemical Thermodynamics, 16 (1984) 623-632.
[106] S.P. Kang, H. Lee, B.J. Ryu, Enthalpies of dissociation of clathrate hydrates of carbon dioxide, nitrogen, (carbon dioxide plus nitrogen), and (carbon dioxide plus nitrogen plus tetrahydrofuran), Journal of Chemical Thermodynamics, 33 (2001) 513-521.
[107] A. Gupta, J. Lachance, E.D. Sloan, C.A. Koh, Measurements of methane hydrate heat of dissociation using high pressure differential scanning calorimetry, Chemical Engineering Science, 63 (2008) 5848-5853.
[108] D.G. Leaist, J.J. Murray, M.L. Post, D.W. Davidson, Enthalpies of decomposition and heat-capacities of ethylene-oxide and tetrahydrofuran hydrates, Journal of Physical Chemistry, 86 (1982) 4175-4178.
[109] O. Yamamuro, M. Oguni, T. Matsuo, H. Suga, Calorimetric study of pure and koh-doped tetrahydrofuran clathrate hydrate, Journal of Physics and Chemistry of Solids, 49 (1988) 425-434.
[110] C.K. Chu, P.C. Chen, Y.P. Chen, S.T. Lin, L.J. Chen, Inhibition effect of 1-ethyl-3-methylimidazolium chloride on methane hydrate equilibrium, The Journal of Chemical Thermodynamics, 91 (2015) 141-145.
[111] H.Y. Chin, B.S. Lee, Y.P. Chen, P.C. Chen, S.T. Lin, L.J. Chen, Prediction of phase equilibrium of methane hydrates in the presence of ionic liquids, Ind. Eng. Chem. Res., 52 (2013) 16985-16992.
[112] H.Y. Chin, M.K. Hsieh, Y.P. Chen, P.C. Chen, S.T. Lin, L.J. Chen, Prediction of phase equilibrium for gas hydrate in the presence of organic inhibitors and electrolytes by using an explicit pressure-dependent Langmuir adsorption constant in the van der Waals–Platteeuw model, J. Chem. Thermodyn., 66 (2013) 34-43.
[113] M.K. Hsieh, Y.T. Yeh, Y.P. Chen, P.C. Chen, S.T. Lin, L.J. Chen, Predictive method for the change in equilibrium conditions of gas hydrates with addition of inhibitors and electrolytes, Ind. Eng. Chem. Res., 51 (2011) 2456-2469.
[114] C.-M. Hsieh, S.I. Sandler, S.-T. Lin, Improvements of COSMO-SAC for vapor–liquid and liquid–liquid equilibrium predictions, Fluid Phase Equilibria, 297 (2010) 90-97.
[115] R. Stryjek, J.H. Vera, PRSV: An improved Peng—Robinson equation of state for pure compounds and mixtures, Can. J. Chem. Eng., 64 (1986) 323-333.
[116] R. Stryjek, J.H. Vera, PRSV — An improved Peng-Robinson equation of state with new mixing rules for strongly nonideal mixtures, The Canadian Journal of Chemical Engineering, 64 (1986) 334-340.
[117] M.L. Michelsen, A modified Huron-Vidal mixing rule for cubic equations of state, Fluid Phase Equilibria, 60 (1990) 213-219.
[118] M.T. Hsieh, S.T. Lin, A Predictive Model for the Excess Gibbs Free Energy of Fully Dissociated Electrolyte Solutions, AIChE Journal, 57 (2011) 1061-1074.
[119] J.B. Klauda, S.I. Sandler, A fugacity model for gas hydrate phase equilibria, Industrial & Engineering Chemistry Research, 39 (2000) 3377-3386.
[120] C.M. Hsieh, S.I. Sandler, S.T. Lin, Improvements of COSMO-SAC for Vapor-Liquid and Liquid-Liquid Equilibrium Predictions, Fluid Phase Equilibria, 297 (2010) 90-97.
[121] W.M. Haynes, D.R. Lide, CRC handbook of chemistry and physics : a ready-reference book of chemical and physical data, CRC Press, Boca Raton, Fla., 2011.
[122] X.M. Peng, Y.F. Hu, Y.S. Liu, C.W. Jin, H.J. Lin, Separation of ionic liquids from dilute aqueous solutions using the method based on CO2 hydrates, Journal of Natural Gas Chemistry, 19 (2010) 81-85.
[123] J.E. Bara, T.K. Carlisle, C.J. Gabriel, D. Camper, A. Finotello, D.L. Gin, R.D. Noble, Guide to CO2 separations in imidazolium-based room-temperature ionic liquids, Ind. Eng. Chem. Res., 48 (2009) 2739-2751.
[124] W. Shimada, M. Shiro, H. Kondo, S. Takeya, H. Oyama, T. Ebinuma, H. Narita, Tetra-n-butylammonium bromide-water (1/38), Acta Crystallogr C, 61 (2005) O65-O66.
[125] S. Stolte, S. Abdulkarim, J. Arning, A.K. Blomeyer-Nienstedt, U. Bottin-Weber, M. Matzke, J. Ranke, B. Jastorff, J. Thoming, Primary biodegradation of ionic liquid cations, identification of degradation products of 1-methyl-3-octylimidazolium chloride and electrochemical wastewater treatment of poorly biodegradable compounds, Green Chemistry, 10 (2008) 214-224.
[126] Y. Deng, P. Besse-Hoggan, M. Sancelme, A.M. Delort, P. Husson, M.F.C. Gomes, Influence of oxygen functionalities on the environmental impact of imidazolium based ionic liquids, Journal of Hazardous Materials, 198 (2011) 165-174.
[127] A.H. Mohammadi, A. Eslamimanesh, V. Belandria, D. Richon, Phase equilibria of semiclathrate hydrates of CO2, N2, CH4, or H2 + tetra-n-butylammonium bromide aqueous solution, Journal of Chemical and Engineering Data, 56 (2011) 3855-3865.
[128] B.C. Gbaruko, J.C. Igwe, P.N. Gbaruko, R.C. Nwokeoma, Gas hydrates and clathrates: Flow assurance, environmental and economic perspectives and the Nigerian liquified natural gas project, J. Pet. Sci. Eng., 56 (2007) 192-198.
[129] C.-K. Chu, S.-T. Lin, Y.-P. Chen, P.-C. Chen, L.-J. Chen, Chain length effect of ionic liquid 1-alkyl-3-methylimidazolium chloride on the phase equilibrium of methane hydrate, Fluid Phase Equilibria, 413 (2016) 57-64.
[130] A.H. Mohammadi, R. Anderson, B. Tohidi, Carbon monoxide clathrate hydrates: Equilibrium data and thermodynamic modeling, AIChE Journal, 51 (2005) 2825-2833.
[131] T. Nakamura, T. Makino, T. Sugahara, K. Ohgaki, Stability boundaries of gas hydrates helped by methane-structure-H hydrates of methylcyclohexane and cis-1,2-dimethylcyclohexane, Chemical Engineering Science, 58 (2003) 269-273.
[132] M.D. Jager, E.D. Sloan, The effect of pressure on methane hydration in pure water and sodium chloride solutions, Fluid Phase Equilib., 185 (2001) 89-99.
[133] T. Komai, Y. Yamamoto, Equilibrium properties and kinetics of methane and carbon dioxide gas hydrate formation/dissociation, Abstracts of Papers of the American Chemical Society, 213 (1997) 90-FUEL.
[134] Y.A. Dyadin, E.Y. Aladko, E.G. Larionov, Decomposition of methane hydrates up to 15 kbar, Mendeleev Commun., (1997) 34-35.
[135] L. Jensen, K. Thomsen, N. von Solms, Inhibition of Structure I and II Gas Hydrates using Synthetic and Biological Kinetic Inhibitors, Energy & Fuels, 25 (2011) 17-23.
[136] L. Del Villano, M.A. Kelland, An investigation into the kinetic hydrate inhibitor properties of two imidazolium-based ionic liquids on Structure II gas hydrate, Chemical Engineering Science, 65 (2010) 5366-5372.
[137] E.D. Sloan, S. Subramanian, P.N. Matthews, J.P. Lederhos, A.A. Khokhar, Quantifying hydrate formation and kinetic inhibition, Industrial & Engineering Chemistry Research, 37 (1998) 3124-3132.
[138] N. Daraboina, P. Linga, J. Ripmeester, V.K. Walker, P. Englezos, Natural Gas Hydrate Formation and Decomposition in the Presence of Kinetic Inhibitors. 2. Stirred Reactor Experiments, Energy & Fuels, 25 (2011) 4384-4391.
[139] N. Daraboina, J. Ripmeester, V.K. Walker, P. Englezos, Natural Gas Hydrate Formation and Decomposition in the Presence of Kinetic Inhibitors. 3. Structural and Compositional Changes, Energy & Fuels, 25 (2011) 4398-4404.
[140] H.P. Veluswamy, J.Y. Chen, P. Linga, Surfactant effect on the kinetics of mixed hydrogen/propane hydrate formation for hydrogen storage as clathrates, Chemical Engineering Science, 126 (2015) 488-499.
[141] M. Blesic, M.H. Marques, N.V. Plechkova, K.R. Seddon, L.P.N. Rebelo, A. Lopes, Self-aggregation of ionic liquids: micelle formation in aqueous solution, Green Chemistry, 9 (2007) 481-490.
[142] S.F. Li, S.S. Fan, J.Q. Wang, X.M. Lang, Y.H. Wang, Semiclathrate hydrate phase equilibria for CO2 in the presence of tetra-n-butyl ammonium halide (Bromide, Chloride, or Fluoride), Journal of Chemical and Engineering Data, 55 (2010) 3212-3215.
[143] E. Ghasemian, M. Najafi, A.A. Rafati, Z. Felegari, Effect of electrolytes on surface tension and surface adsorption of 1-hexyl-3-methylimidazolium chloride ionic liquid in aqueous solution, Journal of Chemical Thermodynamics, 42 (2010) 962-966.
[144] H.Y. Wang, Q.Q. Feng, J.J. Wang, H.C. Zhang, Salt Effect on the Aggregation Behavior of 1-Decyl-3-methylimidazolium Bromide in Aqueous Solutions, J. Phys. Chem. B, 114 (2010) 1380-1387.
[145] K.K. Østergaard, R. Masoudi, B. Tohidi, A. Danesh, A.C. Todd, A general correlation for predicting the suppression of hydrate dissociation temperature in the presence of thermodynamic inhibitors, J. Pet. Sci. Eng., 48 (2005) 70-80.
[146] J.B. Curtis, Fractured shale-gas systems, American Association of Petroleum Geologists Bulletin, 86 (2002) 1921-1938.
[147] J.A. Veil, A.N. Laboratory, I. Argonne, Oil & Natural Gas Technology, in, 2010.
[148] R.D. Vidic, S.L. Brantley, J.M. Vandenbossche, D. Yoxtheimer, J.D. Abad, Impact of Shale Gas Development on Regional Water Quality, Science, 340 (2013) 9.
[149] H. Najibi, R. Rezaei, J. Javanmardi, K. Nasrifar, M. Moshfeghian, Economic evaluation of natural gas transportation from Iran's South-Pars gas field to market, Appl. Therm. Eng., 29 (2009) 2009-2015.
[150] W.S. Lin, N. Zhang, A.Z. Gu, LNG (liquefied natural gas): A necessary part in China's future energy infrastructure, Energy, 35 (2010) 4383-4391.
[151] S. Thomas, R.A. Dawe, Review of ways to transport natural gas energy from countries which do not need the gas for domestic use, Energy, 28 (2003) 1461-1477.
[152] R. Signer, H. Arm, H. Daeniker, Properties of mixed organic phases: Vapor pressures, densities, thermodynamic mixing functions and refractive indices of binary water-tetrahydrofuran and water-diethyl ether systems at 25 degrees, Helvetica Chimica Acta, 52 (1969) 2347.
[153] R. Stephenson, J. Stuart, Mutual binary solubilities - water alcohols and water esters, Journal of Chemical and Engineering Data, 31 (1986) 56-70.
[154] D. Londono, W.F. Kuhs, J.L. Finney, Enclathration of helium in ice-II - the 1st helium hydrate, Nature, 332 (1988) 141-142.
[155] D. Londono, J.L. Finney, W.F. Kuhs, Formation, stability, and structure of helium hydrate at high-pressure, Journal of Chemical Physics, 97 (1992) 547-552.
[156] J.Y. Wu, L.J. Chen, Y.P. Chen, S.T. Lin, Molecular Dynamics Study on the Equilibrium and Kinetic Properties of Tetrahydrofuran Clathrate Hydrates, Journal of Physical Chemistry C, 119 (2015) 1400-1409.
[157] J.Y. Wu, L.J. Chen, Y.P. Chen, S.T. Lin, Molecular Dynamics Study on the Growth Mechanism of Methane plus Tetrahydrofuran Mixed Hydrates, Journal of Physical Chemistry C, 119 (2015) 19883-19890.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49972-
dc.description.abstract本研究使用高壓掃描式熱卡計來測量在定壓環境範圍5.00 ~ 35.00 MPa時,含不同碳鏈長的離子液體的甲烷水合物的相平衡溫度。本研究實驗的離子液體為不同碳鏈長的氯化1-支鍊-3-甲基-咪唑氰胺系列離子液體,分別是支碳鏈長為2,6和10的氯化1-乙基-3-甲基-咪唑氰胺、氯化1-己基-3-甲基-咪唑氰胺和氯化1-癸基-3-甲基-咪唑氰胺。選擇這三個離子液體的目的是為了系統性的研究碳鏈長對於離子液體作為甲烷水合物添加劑的影響。研究結果顯示這三個離子液體都是甲烷水合物的熱力學抑制劑,而抑制能力強弱為: 氯化1-乙基-3-甲基-咪唑氰胺 > 氯化1-己基-3-甲基-咪唑氰胺 > 氯化1-癸基-3-甲基-咪唑氰胺。也就是說碳鏈長越短,抑制效果能力越高。除此之外,本研究用一個熱力學預測模型,成功預測添加了離子液體的甲烷水合物的「氣-液-水合物」三相平衡相平衡邊界。這個預測模型是用Peng-Robinson-Stryjek-Vera(PRSV)狀態方程式搭配COSMO-SAC 活性係數模型與the first order modified Huron-Vidal 混合定律去計算水在氣相與液相的逸壓,而水在水合物相的逸壓則使用凡德瓦(van der Waals)和Platteeuw的模型搭配一個以壓力為變數的朗繆爾吸附常數去計算。這個預測模型的相平衡溫度結果與實驗值的平均誤差為0.54%。
本研究亦建立一個高壓掃描式熱卡計的標準實驗流程,來計算與測量含促進劑甲烷水合物的融解熱與融解溫度,實驗的水合物促進劑包含:四氫氟喃、2,5-二氫氟喃、1,3-二氧六環與環戊醇。在這些藥品中,四氫氟喃是最強的甲烷水合物熱力學促進劑,而環戊醇則是最弱的。而含四氫氟喃的甲烷水合物融解熱根據測量,不管在任何壓力與濃度都幾乎相同不變,約163.8 千焦耳/莫耳促進劑,這個結果與根據分子動力學模擬計算得的結果吻合。但是需要注意的是兩者卻又都小於以克勞修斯-克拉佩龍方程式計算得的含四氫氟喃甲烷水合物融解熱結果。
zh_TW
dc.description.abstractA high pressure differential scanning calorimeter (HP uDSC) was used to determine the dissociation temperature of methane hydrate in the presence of ionic liquid 1–alkyl–3–methylimidazolium chloride under a constant pressure ranging from 5 to 35 MPa. A homologous series of 1–alkyl–3–methylimidazolium chloride with different alkyl chain lengths, including 1-ethyl-3-methylimidazolium chloride, 1-hexyl-3-methylimidazolium chloride and 1-decyl-3-methylimidazolium chloride, were chosen to examine the chain length effect on the dissociation temperature for methane hydrates. All these ionic liquids have inhibition effect on methane hydrate formation. Moreover, the shorter the alkyl chain length is, the stronger the inhibition effect is. That is, the inhibition effect of these ionic liquids on the methane hydrate formation is in the order of 1-ethyl-3-methylimidazolium chloride > 1-hexyl-3-methylimidazolium chloride > 1-decyl-3-methylimidazolium chloride. The three-phase vapor-liquid-hydrate equilibrium condition of methane hydrate in the presence of 1–alkyl–3–methylimidazolium chloride was successfully described by a predictive thermodynamic model. The Peng-Robinson-Stryjek-Vera equation of state incorporated with COSMO-SAC activity coefficient model and the first order modified Huron-Vidal mixing rule were applied to evaluate the fugacity of vapor and liquid phase. An explicit pressure dependence of the Langmuir adsorption constant in the modified van der Waals and Platteeuw model was applied to determine the fugacity of hydrate phase. The absolute average relative deviation in predicted dissociation temperature from the predictive thermodynamic model was 0.54%.
A special operation procedure of the HP uDSC was proposed to determine the dissociation enthalpy and temperature of hydrates in the presence of promoters: tetrahydrofuran, 2,5-dihydrofuran, cyclopentanol and 1,3-dioxane. Among these four promoters, tetrahydrofuran has the strongest promotion capability and cyclopentanol is the weakest one. The dissociation enthalpy of methane hydrates in the presence of tetrahydrofuran is 163.8 kJ/mol promoter and independent of pressures and concentrations of promoter, consistent with the results of molecular dynamic simulations. Note that the dissociation enthalpy of the HP uDSC is consistently smaller than that calculated by using Clausius-Clapeyron equation.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:27:01Z (GMT). No. of bitstreams: 1
ntu-105-F99524049-1.pdf: 5281111 bytes, checksum: 515436390c5ffe8f134a184571afadff (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents摘要 I
Abstract III
Content V
Figures VII
Tables XIII
Chapter 1 Introduction 1
1.1 Gas hydrate 1
1.2 Influence of additives on the phase behavior gas hydrates 4
1.3 Calculation of phase equilibrium condition of gas hydrates 10
1.4 Dissociation enthalpy of gas hydrates 12
1.5 Thesis outline 17
Chapter 2 Apparatus and Experiment 29
2.1 Materials and high-pressure micro differential scanning calorimeter 29
2.2 The measurement of hydrate phase equilibrium boundary and improvement of hydrate synthesis method 32
2.3 The prediction of phase equilibrium boundary of methane hydrates in the presence of additives 38
2.4 Dissociation enthalpies of methane hydrates in the presence of promoters 44
Chapter 3 Chain Length Effect of Ionic Liquids on The Phase Equilibrium Boundaries of Methane Hydrates 65
3.1 Inhibition effect of 1-ethyl-3-methylimidazolium chloride on methane hydrate equilibrium 67
3.2 Inhibition effect of 1-hexyl-3-methylimidazolium chloride and 1-decyl-3-methylimidazolium chloride on methane hydrate equilibrium 70
3.3 Prediction and correlation models to describe the phase equilibrium conditions of methane hydrate in the presence of 1-alkyl-3-methylimidazolium chloride 74
Chapter 4 Phase Equilibrium Boundaries and Dissociation Enthalpies of Methane Hydrates in The Presence of Cyclic Hydrocarbons 95
4.1 The promotion effect of tetrahydrofuran on methane hydrate 97
4.2 The comparison of promotion effect by different cyclic hydrocarbons on methane hydrate 99
4.3 The dissociation enthalpies of methane hydrate in the presence of cyclic hydrocarbons 103
Chapter 5 Conclusion 138
References 142
dc.language.isoen
dc.title以掃描式熱卡計測量含抑制劑與促進劑的甲烷水合物之融解熱與相平衡zh_TW
dc.titleApplication of DSC to Determine the Heat of Dissociation and Phase Boundary of Methane Hydrates in the Presence of Inhibitors and Promotersen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree博士
dc.contributor.oralexamcommittee陳延平(Yan-Ping Chen),林祥泰(Shiang-Tai Lin),李明哲(Ming-Jer Lee),蘇至善(Chie-Shaan Su),陳炳宏(Bing-Hung Chen)
dc.subject.keyword氣體水合物,掃描式熱卡計,熱力學促進劑,離子液體,融解熱,zh_TW
dc.subject.keywordgas hydrates,differential scanning calorimetry,thermodynamic promoter,ionic liquids,dissociation enthalpy,en
dc.relation.page154
dc.identifier.doi10.6342/NTU201602116
dc.rights.note有償授權
dc.date.accepted2016-08-10
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
5.16 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved