Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49964
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor薛承輝(Chun-Hway Hsueh)
dc.contributor.authorMiao-Hsuan Chienen
dc.contributor.author簡妙璇zh_TW
dc.date.accessioned2021-06-15T12:26:53Z-
dc.date.available2016-08-30
dc.date.copyright2016-08-30
dc.date.issued2016
dc.date.submitted2016-08-10
dc.identifier.citation1. Jiang, J.; Bosnick, K.; Maillard, M.; Brus, L., Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals. The Journal of Physical Chemistry B, 2003. 107(37): p. 9964–9972.
2. Li, K.; Stockman, M. I.; Bergman D. J., Self-similar chain of metal nanospheres as an efficient nanolens. Physical review letters, 2003. 91(22): p. 227402.
3. Shao, L.; Woo, K. C.; Chen, H.; Jin, Z.; Wang, J.; Lin, H. Q., Angle-and energy-resolved plasmon coupling in gold nanorod dimers. ACS nano, 2010. 4(6): p. 3053–3062.
4. Haynes, C. L.; Yonzon, C. R.; Zhang, X.; Van Duyne, R. P., Surface‐enhanced Raman sensors: early history and the development of sensors for quantitative biowarfare agent and glucose detection. Journal of Raman Spectroscopy, 2005. 36(6‐7): p. 471–484.
5. Nie, S.; Emory, S. R., Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. science, 1997. 275(5303): p. 1102–1106.
6. Kosuda, K. M.; Bingham, J. M.; Wustholz, K. L.; Van Duyne, R. P., 9 Nanostructures and Surface-Enhanced Raman Spectroscopy. Handbook of Nanoscale Optics and Electronics, 2010: p. 309.
7. Kneipp, K.; Kneipp, H.; Itzkan, I.; Dasari, R. R.; Feld, M. S., Surface-enhanced Raman scattering and biophysics. Journal of Physics: Condensed Matter, 2002. 14: p. R597.
8. Betzig, E.; J.K. Trautman, Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science, 1992. 257(5067): p. 189–195.
9. Haes, A. J.; Chang, L.; Klein, W. L.; Van Duyne, R. P., Detection of a biomarker for Alzheimer's disease from synthetic and clinical samples using a nanoscale optical biosensor. Journal of the American Chemical Society, 2005. 127(7): p. 2264–2271.
10. Haes, A. J.; Hall, W. P.; Chang, L.; Klein, W. L.; Van Duyne, R. P., A localized surface plasmon resonance biosensor: First steps toward an assay for Alzheimer's disease. Nano Letters, 2004. 4(6): p. 1029–1034.
11. Raschke, G.; Kowarik, S.; Franzl, T.; Sönnichsen, C.; Klar, T. A.; Feldmann, J.; Kürzinger, K., Biomolecular recognition based on single gold nanoparticle light scattering. Nano letters, 2003. 3(7): p. 935–938.
12. Sepúlveda, B.; Angelomé, P. C.; Lechuga, L. M.; & Liz-Marzán, L. M., LSPR-based nanobiosensors. Nano Today, 2009. 4(3): p. 244–251.
13. Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P., Biosensing with plasmonic nanosensors. Nature materials, 2008. 7(6): p. 442–453.
14. Srituravanich, W.; Fang, N.; Sun, C.; Luo, Q.; Zhang, X., Plasmonic nanolithography. Nano letters, 2004. 4(6): p. 1085–1088.
15. Ritchie, R., Plasma losses by fast electrons in thin films. Physical Review, 1957. 106(5): p. 874.
16. Kretschmann, E.; Raether H., Notizen: Radiative Decay of Non Radiative Surface Plasmons Excited by Light. Zeitschrift für Naturforschung A, 1968. 23(12): p. 2135–2136.
17. Willets, K. A.; Van Duyne, R. P., Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem., 2007. 58: p. 267–297.
18. Zayats, A.V.; Smolyaninov, I. I.; Maradudin, A. A., Nano-optics of surface plasmon polaritons. Physics reports, 2005. 408(3): p. 131–314.
19. Tam, F.; Goodrich, G. P.; Johnson, B. R.; Halas, N. J., Plasmonic enhancement of molecular fluorescence. Nano Letters, 2007. 7(2): p. 496–501.
20. Aizpurua, J.; Hanarp, P.; Sutherland, D. S.; Käll, M.; Bryant, G. W.; De Abajo, F. G., Optical properties of gold nanorings. Physical Review Letters, 2003. 90(5): p. 057401.
21. Lee, S. J.; Guan, Z.; Xu, H.; Moskovits, M., Surface-enhanced Raman spectroscopy and nanogeometry: The plasmonic origin of SERS. The Journal of Physical Chemistry C, 2007. 111(49): p. 17985–17988.
22. Alù, A. ;Engheta, N., Multifrequency optical invisibility cloak with layered plasmonic shells. Physical Review Letters, 2008. 100(11): p. 113901.
23. Hatab, N. A.; Hsueh, C. H.; Gaddis, A. L.; Retterer, S. T.; Li, J. H.; Eres, G.; Gu, B., Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy. Nano Letters, 2010. 10(12): p. 4952–4955.
24. Michaels, A. M.; Nirmal, M.; Brus, L., Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals. Journal of the American Chemical Society, 1999. 121(43): p. 9932–9939.
25. Zuloaga, J.; Nordlander, P. , On the energy shift between near-field and far-field peak intensities in localized plasmon systems. Nano letters, 2011. 11(3): p. 1280–1283.
26. Pinchuk, A. O.; Schatz, G. C., Nanoparticle optical properties: Far-and near-field electrodynamic coupling in a chain of silver spherical nanoparticles. Materials Science and Engineering: B, 2008. 149(3): p. 251–258.
27. Mock, J. J.; Barbic, M.; Smith, D. R.; Schultz, D. A.; Schultz, S., Shape effects in plasmon resonance of individual colloidal silver nanoparticles. The Journal of Chemical Physics, 2002. 116(15): p. 6755–6759.
28. Haes, A. J.; Haynes, C. L.; McFarland, A. D.; Schatz, G. C.; Van Duyne, R. P.; Zou, S., Plasmonic materials for surface-enhanced sensing and spectroscopy. Mrs Bulletin, 2005. 30(05): p. 368–375.
29. Jung, L. S.; Campbell, C. T.; Chinowsky, T. M.; Mar, M. N.; Yee, S. S., Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films. Langmuir, 1998. 14(19): p. 5636–5648.
30. Haes, A. J.; Van Duyne, R.P., A Nanoscale Optical Biosensor:  Sensitivity and Selectivity of an Approach Based on the Localized Surface Plasmon Resonance Spectroscopy of Triangular Silver Nanoparticles. Journal of the American Chemical Society, 2002. 124(35): p. 10596–10604.
31. Prodan, E.; Radloff, C.; Halas, N. J.; Nordlander, P., A hybridization model for the plasmon response of complex nanostructures. Science, 2003. 302(5644): p. 419–422.
32. Willingham, B.; Brandl, D.; Nordlander, P., Plasmon hybridization in nanorod dimers. Applied Physics B, 2008. 93(1): p. 209–216.
33. Nordlander, P.; Oubre, C.; Prodan, E.; Li, K.; Stockman, M. I., Plasmon hybridization in nanoparticle dimers. Nano Letters, 2004. 4(5): p. 899–903.
34. Funston, A. M.; Novo, C.; Davis, T. J.; Mulvaney, P., Plasmon coupling of gold nanorods at short distances and in different geometries. Nano letters, 2009. 9(4): p. 1651–1658.
35. Jain, P. K.; Eustis, S.; El-Sayed, M. A., Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model. The Journal of Physical Chemistry B, 2006. 110(37): p. 18243–18253.
36. Slaughter, L. S.; Wu, Y.; Willingham, B. A.; Nordlander, P.; Link, S., Effects of symmetry breaking and conductive contact on the plasmon coupling in gold nanorod dimers. Acs Nano, 2010. 4(8): p. 4657–4666.
37. Tabor, C.; Van Haute, D.; El-Sayed, M.A., Effect of orientation on plasmonic coupling between gold nanorods. ACS nano, 2009. 3(11): p. 3670–3678.
38. Draine, B. T., The discrete-dipole approximation and its application to interstellar graphite grains. The Astrophysical Journal, 1988. 333: p. 848–872.
39. Waterman, P., Symmetry, unitarity, and geometry in electromagnetic scattering. Physical review D, 1971. 3(4): p. 825.
40. Taflove, A.; Hagness, S. C., Computationai Electrodynamics. 2000.
41. Davidson, D. B., Computational electromagnetics for RF and microwave engineering. 2005: Cambridge University Press.
42. Tavlove, A.; Hagness, S. C., Computational electrodynamics: the finite-difference time-domain method. Artech House, Norwood, MA, 1995. 2062.
43. Jeanmaire, D. L.; Van Duyne, R. P., Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1977. 84(1): p. 1–20.
44. Moskovits, M., Surface-enhanced spectroscopy. Reviews of modern physics, 1985. 57(3): p. 783.
45. Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L. T.; Itzkan, I.; Dasari, R. R.; Feld, M. S., Single molecule detection using surface-enhanced Raman scattering (SERS). Physical review letters, 1997. 78(9): p. 1667.
46. Raman, C., A new radiation. Indian Journal of physics, 1928. 2: p. 387-398.
47. Smekal, A., Zur quantentheorie der dispersion. Naturwissenschaften, 1923. 11(43): p. 873–875.
48. Banwell, C. N.; McCash, E. M., Fundamentals of molecular spectroscopy. 1983: McGraw-Hill London.
49. Kittel, C., Introduction to solid state physics. 2005: Wiley.
50. Etchegoin, P.; Maher, R. C.; Cohen, L. F.; Hartigan, H.; Brown, R. J. C.; Milton, M. J. T.; Gallop, J. C., New limits in ultrasensitive trace detection by surface enhanced Raman scattering (SERS). Chemical Physics Letters, 2003. 375(1): p. 84–90.
51. Otto, A.; Mrozek, I.; Grabhorn, H.; Akemann, W., Surface-enhanced Raman scattering. Journal of Physics: Condensed Matter, 1992. 4: p. 1143.
52. Aroca, R.; Corporation, E., Surface enhanced vibrational spectroscopy. 2006: Wiley Online Library.
53. McFarland, A. D.; Young, M. A.; Dieringer, J. A.; Van Duyne, R. P., Wavelength-scanned surface-enhanced Raman excitation spectroscopy. The Journal of Physical Chemistry B, 2005. 109(22): p. 11279–11285.
54. Haynes, C. L.; Van Duyne, R. P., Plasmon-sampled surface-enhanced Raman excitation spectroscopy. The Journal of Physical Chemistry B, 2003. 107(30): p. 7426–7433.
55. Campion, A.; Kambhampati, P., Surface-enhanced Raman scattering. Chem.Soc. Rev., 1998. 27(4): p. 241–250.
56. Huang, Y.-F., et al., Surface-enhanced Raman spectroscopic study of p-aminothiophenol. Physical Chemistry Chemical Physics, 2012. 14(24): p. 8485–8497.
57. Huang, T.; Cao, W.; Elsayed-Ali, H. E.; Xu, X. H. N., High-throughput ultrasensitive characterization of chemical, structural and plasmonic properties of EBL-fabricated single silver nanoparticles. Nanoscale 2012, 4, 380–385
58. Kuwata, H.; Tamaru, H.; Esumi, K.; Miyano, K., Resonant light scattering from metal nanoparticles: Practical analysis beyond Rayleigh approximation. Appl. Phys. Lett. 2003, 83, 4625–4627
59. Maier, S. A.; Kik, P. G.; Atwater, H. A.; Meltzer, S.; Harel, E.; Koel, B. E.; Requicha, A. A., Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat. Mater. 2003, 2, 229–232
60. Mock, J.; Barbic, M.; Smith, D.; Schultz, D.; Schultz, S., Local Refractive Index Dependence of Plasmon Resonance Spectra from Individual Nanoparticles. J. Chem. Phys 2002, 116, 6755–6759
61. Bi, G.; Xiong, W.; Wang, L.; Ueno, K.; Misawa, H.; Qiu, J.,. Fabrication of periodical structure and shape-induced modulating spectroscopy of Au nanoparticles. Opt. Commun. 2012, 285, 2472–2477
62. Koh, A. L.; Fernández-Domínguez, A. I.; McComb, D. W.; Maier, S. A.; Yang, J. K., High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures. Nano Lett. 2011, 11, 1323–1330
63. Gu, L.; Sigle, W.; Koch, C. T.; Ögüt, B.; van Aken, P. A.; Talebi, N.; Vogelgesang, R.; Mu, J.; Wen, X.; Mao, J., Resonant wedge-plasmon modes in single-crystalline gold nanoplatelets. Phys. Rev. B 2011, 83, 195433
64. Nelayah, J.; Kociak, M.; Stéphan, O.; de Abajo, F. J. G.; Tencé, M.; Henrard, L.; Taverna, D.; Pastoriza-Santos, I.; Liz-Marzán, L. M.; Colliex, C., Mapping surface plasmons on a single metallic nanoparticle. Nature Phys. 2007, 3, 348–353
65. Zou, S.; Schatz, G. C., Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields. Chem. Phys. Lett. 2005, 403, 62–67
66. Hao, E.; Schatz, G. C., Electromagnetic fields around silver nanoparticles and dimers. J. Chem. Phys 2004, 120, 357–366
67. Hatab, N. A.; Hsueh, C. H.; Gaddis, A. L.; Retterer, S. T.; Li, J. H.; Eres, G.; Zhang, Z.; Gu, B., Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy. Nano Lett. 2010, 10, 4952–4955
68. Hsueh, C. H.; Lin, C. H.; Li, J. H.; Hatab, N. A.; Gu, B., Resonance modes, cavity field enhancements, and long-range collective photonic effects in periodic bowtie nanostructures. Opt. Express 2011, 19, 19660–19667
69. Dodson, S.; Haggui, M.; Bachelot, R.; Plain, J. r. m.; Li, S.; Xiong, Q., Optimizing electromagnetic hotspots in plasmonic bowtie nanoantennae. J. Phys. Chem. Lett. 2013, 4, 496—501
70. Zhou, Y.; Zhou, X.; Park, D. J.; Torabi, K; Brown, K. A.; Jones, M. R.; Zhang, C.; Schatz, G. C.; Chad A. Mirkin, Shape-Selective Deposition and Assembly of Anisotropic Nanoparticles. Nano Lett. 2014, 14, 2157–2161
71. Nien, L. W.; Chao, B. K.; Li, J. H.; Hsueh, C. H., Optimized Sensitivity and Electric Field Enhancement by Controlling Localized Surface Plasmon Resonances for Bowtie Nanoring Nanoantenna Arrays. Plasmonics 2014, 1–9
72. Nien, L. W.; Lin, S. C.; Chao, B. K.; Chen, M. J.; Li, J. H.; Hsueh, C. H., Giant Electric Field Enhancement and Localized Surface Plasmon Resonance by Optimizing Contour Bowtie Nanoantennas. J. Phys. Chem. C 2013, 117, 25004–25011
73. Bi, G.; Wang, L.; Ling, L.; Yokota, Y.; Nishijima, Y.; Ueno, K.; Misawa, H.; Qiu, J., Optical properties of gold nano-bowtie structures. Opt. Commun. 2013, 294, 213–217
74. Ding, W.; Bachelot, R.; Kostcheev, S.; Royer, P.; de Lamaestre, R. E., Surface plasmon resonances in silver Bowtie nanoantennas with varied bow angles. J. Appl. Phys. 2010, 108, 124314
75. Jin, R.; Cao, Y.; Mirkin, C. A.; Kelly, K.; Schatz, G. C.; Zheng, J., Photoinduced conversion of silver nanospheres to nanoprisms. Science 2001, 294, 1901–1903
76. Rosen, D. A.; Tao, A. R., Modeling the Optical Properties of Bowtie Antenna Generated By Self-Assembled Ag Triangular Nanoprisms. ACS Appl. Mater. Interfaces 2014, 6, 4134–4142
77. Kotkowiak, M., Grześkiewicz, B., Robak, E. & Wolarz, E., Interaction between Nanoprisms with Different Coupling Strength. J. Phys. Chem. C 2015, 119, 6195–6203
78. Funston, A. M.; Novo, C.; Davis, T. J.; Mulvaney, P., Plasmon coupling of gold nanorods at short distances and in different geometries. Nano Lett. 2009, 9, 1651–1658
79. Jain, P. K.; Eustis, S.; El-Sayed, M. A., Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model. J. Phys. Chem. B 2006, 110, 18243–18253
80. Shao, L.; Woo, K. C.; Chen, H.; Jin, Z.; Wang, J.; Lin, H. Q., Angle-and energy-resolved plasmon coupling in gold nanorod dimers. ACS nano 2010, 4, 3053–3062
81. Slaughter, L. S.; Wu, Y.; Willingham, B. A.; Nordlander, P.; Link, S., Effects of symmetry breaking and conductive contact on the plasmon coupling in gold nanorod dimers. Acs Nano 2010, 4, 4657–4666
82. Tabor, C.; Van Haute, D.; El-Sayed, M. A., Effect of orientation on plasmonic coupling between gold nanorods. ACS nano 2009, 3, 3670–3678
83. Willingham, B.; Brandl, D.; Nordlander, P. Plasmon hybridization in nanorod dimers. Appl. Phys. B 2008, 93, 209–216
84. Manfrinato, V. R.; Wen, J.; Zhang, L.; Yang, Y.; Hobbs, R. G.; Baker, B.; Su, D.; Zakharov, D.; Zaluzec, N. J.; Miller, D. J., Determining the resolution limits of electron-beam lithography: direct measurement of the point-spread function. Nano Lett. 2014, 14, 4406–4412
85. Chen, H.; Sun, Z.; Ni, W.; Woo, K. C.; Lin, H. Q.; Sun, L.; Yan, C.; Wang, J., Plasmon coupling in clusters composed of two‐dimensionally ordered gold nanocubes. Small 2009, 5, 2111–2119
86. Jain, P. K.; Huang, W.; El-Sayed, M. A., On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation. Nano Lett. 2007, 7, 2080–2088
87. Tabor, C.; Murali, R.; Mahmoud, M.; El-Sayed, M. A., On the Use of Plasmonic Nanoparticle Pairs As a Plasmon Ruler: The Dependence of the Near-Field Dipole Plasmon Coupling on Nanoparticle Size and Shape. J. Phys. Chem. A 2009, 113, 1946–1953
88. Lamprecht, B.; Schider, G.; Lechner, R.; Ditlbacher, H.; Krenn, J.; Leitner, A.; Aussenegg, F., Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance. Phys. Rev. Lett. 2000, 84, 4721
89. Nishijima, Y.; Rosa, L.; Juodkazis, S., Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting. Opt. Express 2012, 20, 11466–11477
90. Lumerical Solution. https://www.lumerical.com/
91. Johnson, P. B.; Christy, R.-W., Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370
92. Palik, E. D., Handbook of optical constants of solids. Academic press: 1998; Vol. 3.
93. Haes, A. J.; Haynes, C. L.; McFarland, A. D.; Schatz, G. C.; Van Duyne, R. P.; Zou, S., Plasmonic materials for surface-enhanced sensing and spectroscopy. MRS Bull. 2005, 30, 368–375
94. McFarland, A. D.; Young, M. A.; Dieringer, J. A.; Van Duyne, R. P., Wavelength-scanned surface-enhanced Raman excitation spectroscopy. J. Phys. Chem. B 2005, 109, 11279–11285
95. Haynes, C. L.; Van Duyne, R. P., Plasmon-sampled surface-enhanced Raman excitation spectroscopy. J. Phys. Chem. B 2003, 107, 7426–7433
96. Willets, K. A.; Van Duyne, R. P., Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 2007, 58, 267–297
97. Fromm, D. P.; Sundaramurthy, A.; Schuck, P. J.; Kino, G.; Moerner, W., Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible. Nano Lett. 2004, 4, 957–961
98. Maier, S. A., Plasmonics: Fundamentals and Applications: Fundamentals and Applications. Springer: 2007.
99. Zuloaga, J.; Nordlander, P., On the energy shift between near-field and far-field peak intensities in localized plasmon systems. Nano Lett. 2011, 11, 1280–1283
100. Prodan, E.; Radloff, C.; Halas, N. J.; Nordlander, P., A hybridization model for the plasmon response of complex nanostructures. Science 2003, 302, 419–422
101. Halas, N. J.; Lal, S.; Chang, W. S.; Link, S.; Nordlander, P., Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 2011, 111, 3913–3961
102. Giannini, V.; Fernández‐Domínguez, A. I.; Sonnefraud, Y.; Roschuk, T.; Fernández‐García, R.; Maier, S. A., Controlling light localization and light–matter interactions with nanoplasmonics. Small 2010, 6, 2498–2507
103. Gotschy, W.; Vonmetz, K.; Leitner, A.; Aussenegg, F., Thin films by regular patterns of metal nanoparticles: Tailoring the optical properties by nanodesign. Appl. Phys. B 1996, 63, 381–384
104. Nemes, C. T.; Vijapurapu, D. K.; Petoukhoff, C. E.; Cheung, G. Z.; O’Carroll, D. M., Absorption and scattering effects by silver nanoparticles near the interface of organic/inorganic semiconductor tandem films. J. Nanopart. Res. 2013, 15, 1–13
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49964-
dc.description.abstract本論文以理論及實驗手法探討領結形奈米結構(Bowtie nanostructure)中三角柱 的方向在表面電漿共振上的效應。透過電子束微影製程製作不同旋轉角度的金奈 米領結型結構,並且透過時域有限差分法模擬其局域性表面共振行為,再分別以 表面增強拉曼散射光譜及暗場顯微散射光譜分別測量其近場及遠場的光學性質, 與實驗相互比對印證。除了一般廣泛見於二極表面電漿共振(Dipolar resonance)的 角模態(Tip mode)外,邊模態(Edge mode)也會在三角柱旋轉的過程中被激發。邊模 態的激發及其隨著旋轉角度的變化可以由金屬表面電荷密度來觀察,透過對角模 態及邊模態的電場及表面電荷密度分析,兩者在旋轉過程中所產生的趨勢也將被 討論。亦基於所歸納的趨勢:相對共振波長的差距相對於旋轉角度的餘弦呈現接 近指數遞減關係,建立電漿量角器(Plasmon protractor)。最後,我們提出一個針對旋轉領結型奈米結構的電漿子混成模型(Plasmon hybridization model)來解釋不同旋轉角度中表面電漿耦合的現象。透過此研究,旋轉角度與領結型奈米結構中電漿共振的關係已被建立,希望對於往後領結型奈米結構的應用,如在表面增強拉曼散射光譜方面,能夠有所幫助。zh_TW
dc.description.abstractThe effects of rotation angle on the surface plasmon coupling of nanoprisms were analyzed using finite-difference time-domain simulations and were first verified experimentally through both near-field and far-field optical techniques in present study. In addition to the widely-discussed dipolar resonance in regular bowtie nanostructures, defined as tip-mode resonance in present study, the excitations of edge-mode resonance were discovered under certain rotation angles of nanoprisms. The transitions between modes also took place during rotations. To justify the theoretical predictions, the gold bowtie nanoantennas were fabricated with different rotation angles using electron-beam lithography with highly controlled geometries of nanostructures, and two different excitation wavelengths were used as incident sources of Raman spectroscopy on fabricated rotated bowtie nanostructures with different rotation angles, to provide near-field evidences for the excitation and evolution of different resonance modes. The dark-field scattering microspectroscopy was also adopted for the detection of the far-field responses. Based on the discovered trend, a plasmon protractor was created with the near-exponential decay relationship between the relative resonance wavelength shift and cosine of the rotation angle. A plasmon hybridization model was also proposed for rotated bowtie to explain the coupling between nanoprisms during rotation.en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:26:53Z (GMT). No. of bitstreams: 1
ntu-105-R02527049-1.pdf: 2901785 bytes, checksum: dbded03886d8fb19503831d8d2848f3e (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES x
Chapter 1 Preface 1
1.1 Motivations 1
1.2 Objectives 2
1.3 References 2
Chapter 2 Literature Review 3
2.1 Plasmonic Theory 3
2.1.1 Surface Plasmon Polaritons 3
2.1.2 Localized Surface Plasmon Resonances 6
2.1.3 The Plasmon Hybridization Theory 9
2.2 Finite Difference Time Domain Simulation (FDTD) 11
2.3 Surface-enhanced Raman Scattering (SERS) 15
2.3.1 Raman Scattering 15
2.3.2 Raman Spectroscopy 17
2.3.3 Electromagnetic Enhancement (EM) 18
2.3.4 Chemical Enhancement (CE) 20
2.4 References 21
Chapter 3 Effects of Rotation-angle on Surface Plasmon Coupling of Nanoprisms 28
3.1 Introduction 28
3.2 Methodologies 30
3.2.1 Dimensional parameters of rotated bowties 30
3.2.2 FDTD simulations 32
3.2.3 EBL fabrications 34
3.2.4 Raman spectroscopy 35
3.2.5 Dark-field microspectroscopy 37
3.3 Results and Discussions 37
3.3.1 Plasmon coupling in bowtie nanostructures with different rotation angles 37
3.3.2 The dependence of edge-mode resonance wavelength on rotation angle and the plasmon protractor 42
3.3.3 The energy of resonance modes and the plasmon hybridization of rotated bowtie 44
3.3.4 Effects of rotation angle on the enhancement of Raman spectroscopy 46
3.4 Conclusions 48
3.5 Supporting Information 50
3.5.1 Scattering spectroscopy 50
3.5.2 Laser selections of Raman spectroscopy 51
3.5.3 Calculated Raman enhancement obtained from FDTD 52
3.5.4 Original Raman intensity 53
3.5.5 FDTD simulated spectra 56
3.5.6 The SEM images of rotate bowtie nanostructure arrays 57
3.5.7 The dark field image of fabricated rotate bowtie arrays 58
3.6 References 59
dc.language.isoen
dc.title三角柱之旋轉對領結形金奈米週期陣列造成效應之探討zh_TW
dc.titleEffects of Rotation-angle on Surface Plasmon Coupling of Nanoprismsen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李佳翰(Jia-Han Li),陳敏璋(Miin-Jang Chen)
dc.subject.keyword時域有限差分法,局域性表面電漿共振效應,表面電漿子耦合,旋轉,奈米三角柱,領結形結構,表面增強拉曼散射光譜,zh_TW
dc.subject.keywordFinite-difference time-domain method,Localized surface plasmon resonance,Plasmon coupling,rotation,Nanoprism,Bowtie,Surface-enhanced Raman spectroscopy,en
dc.relation.page64
dc.identifier.doi10.6342/NTU201602140
dc.rights.note有償授權
dc.date.accepted2016-08-10
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
2.83 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved