請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49960完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 丁建均 | |
| dc.contributor.author | Ya-Hsin Cheng | en |
| dc.contributor.author | 鄭雅馨 | zh_TW |
| dc.date.accessioned | 2021-06-15T12:26:49Z | - |
| dc.date.available | 2016-08-24 | |
| dc.date.copyright | 2016-08-24 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-09 | |
| dc.identifier.citation | A. Related work for cell segmentation
[1] Anoraganingrum, Dwi, Cell segmentation with median filter and mathematical morphology operation, Image Analysis and Processing, 1999, Proceedings. International Conference on IEEE, 1999. [2] Shneier, Michael, Using pyramids to define local thresholds for blob detection, Pattern Analysis and Machine Intelligence on IEEE Transactions on 3, 1983, pp. 345-349. [3] Automatic Threshold Calculation and Blob Detection : CODE https://bytesandlogics.wordpress.com/2012/03/11/136/ [4] Liao, Qingmin, and Yingying Deng, An accurate segmentation method for white blood cell images, Biomedical Imaging, 2002, International Symposium on IEEE, 2002. [5] Jiang, K., Liao, Q. M., and Dai, S. Y., A novel white blood cell segmentation scheme using scale-space filtering and watershed clustering, Machine Learning and Cybernetics on IEEE International Conference, 2003, pp. 2820-2825. [6] Chen, Xiaowei, Xiaobo Zhou, and Stephen TC Wong, Automated segmentation, classification, and tracking of cancer cell nuclei in time-lapse microscopy, Biomedical Engineering on IEEE, 2006, pp. 762-766. [7] Li, Gang, et al, 3D cell nuclei segmentation based on gradient flow tracking, BMC cell biology 8.1, 2007, pp. 1. [8] Sadeghian, F., Seman, Z., Ramli, A. R., Kahar, B. A., and Saripan, M. I., A framework for white blood cell segmentation in microscopic blood images using digital image processing, Biological procedures online, 2009, pp. 196-206. [9] Gavlasová, Andrea, Ales Prochazka, and Martina Mudrová, Wavelet based image segmentation, the 14th Annual Conference Technical Computing, Prague, 2006. [10] Wavelet Based Image Segmentation http://www.mathworks.com/matlabcentral/fileexchange/48610-wavelet-based-image-segmentation [11] Zhou, Xiaobo, et al, A novel cell segmentation method and cell phase identification using Markov model, IEEE Information Technology in Biomedicine, 2009, pp. 152-157. [12] R. Adams, Radial decomposition of discs and spheres, Comput. Vis. Graph Image Process: Graph Models Image Process, 1993, pp. 325-332. [13] J. Lindblad, C. Wählby, E. Bengtsson and A. Zaltsman, Image analysis for automatic segmentation of cytoplasms and classification of Rac1 activation, Cytometry A, vol. 57, no. 1, 2004, pp. 22-33. [14] Andrews, Shawn, Ghassan Hamarneh, and Ahmed Saad, Fast random walker with priors using precomputation for interactive medical image segmentation, Medical Image Computing and Computer-Assisted Intervention–MICCAI, Springer Berlin Heidelberg, 2010, pp. 9-16. [15] Amat, Fernando, Eugene W. Myers, and Philipp J. Keller, Fast and robust optical flow for time-lapse microscopy using super-voxels, Bioinformatics 29.3, 2013, pp. 373-380. [16] Amat, Fernando, et al, Fast, accurate reconstruction of cell lineages from large-scale fluorescence microscopy data, Nature methods, 2014. [17] Schiegg, Martin, et al, Graphical model for joint segmentation and tracking of multiple dividing cells, Bioinformatics, 2014. B. Related work for region splitting algorithm [18] Liu Lifeng, and Stan Sclaroff., Region segmentation via deformable model-guided split and merge, Computer Vision, 2001. ICCV, 2001. Eighth IEEE International Conference, 2001. [19] Xiong Wei, Sim Heng Ong, and Joo Hwee Lim, A recursive and model-constrained region splitting algorithm for cell clump decomposition, Pattern Recognition (ICPR), 2010 20th International Conference on IEEE, 2010. [20] Tafavogh, Siamak, et al, Segmenting Neuroblastoma Tumor Images and Splitting Overlapping Cells Using Shortest Paths between Cell Contour Convex Regions, Artificial Intelligence in Medicine, Springer Berlin Heidelberg, 2013, pp. 171-175. [21] Tafavogh, Siamak, Daniel R. Catchpoole, and Paul J. Kennedy, Cellular quantitative analysis of neuroblastoma tumor and splitting overlapping cells, BMC bioinformatics 15.1, 2014, pp. 1. [22] Abbas, Naveed, et al, CLUSTERED RED BLOOD CELLS SPLITTING VIA BOUNDARY ANALYSIS IN MICROSCOPIC THIN BLOOD SMEAR DIGITAL IMAGES. [23] Zhong Qu and Li Hang, Research on Iimage Segmentation Based on the Improved Otsu Algorithm, 2010. C. Additional materials [24] Markov properties http://signal.ee.psu.edu/mrf.pdf | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49960 | - |
| dc.description.abstract | 近年來在醫學研究上,追蹤細胞軌跡、判定細胞死亡、細胞分裂等研究越來越受重視,但在做細胞追蹤和分析前,細胞切割將是會先面臨的問題,如果沒有準確的細胞切割,在之後的分析上很容易產生誤差並累積影響判斷,所以好的切割對於細胞追蹤和分析是很重要的一環。
本篇論文將詳細說明我們提出的細胞切割方法。在做細胞切割時,可能會面臨不同的細胞形狀、背景干擾和影像品質等問題,在本篇研究中,解決了以上問題並提供穩定且適應性強的細胞切割方法,首先利用提出的自動適應性的二分法將影像分成細胞和背景區域,接著利用改良的最短路徑切割法,將需要再分割的細胞區域進行進一步的分割,最後,我們利用二維所得到的細胞切割結果建立出三維的細胞切割。實驗結果顯示我們提出來的方法可以將大部分的細胞影像都切割出來,而且表現還勝過現今較新穎的方法。 | zh_TW |
| dc.description.abstract | Study of living cells like cell movement, cell death, and cell division are more and more popular these days. Before cell tracking and analysis, cell segmentation should first be performed. Without accurate cell segmentation, the later biological analysis will have large error due to accumulation of preprocessing error. As a result, good segmentation is an important step for cell tracking and analysis.
This thesis describes the methods of cell segmentation that we proposed. In cell segmentation, we have to deal with problems such as different kinds of shapes of the cells, background interference, the quality of the image, etc. We solve those issues and propose a robust cell segmentation method. First, we apply automatic adaptive thresholding to separate images into cell region and background. Second, applying improved shortest path segmentation to cell regions which need to be further segmented. Finally, we construct the fundamental 3D cell segmentation by applying 3D cell labeling to the result of 2D cell segmentation. Simulations show that our proposed method segments most of cell images efficiently and outperforms state-of-the-art methods. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T12:26:49Z (GMT). No. of bitstreams: 1 ntu-105-R03942041-1.pdf: 7729072 bytes, checksum: 6aba441c6f6147397d5915d83b4dd8c4 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 口試委員會審定書……………………………………………………………………#
誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES ix LIST OF TABLES xiv Chapter 1 Introduction 1 1.1 Background 1 1.2 Main Contribution 1 1.3 Organization 2 Chapter 2 Reviewing Cell Segmentation Algorithms 3 2.1 Median Filter and Mathematical Morphology Operation 4 2.1.1 About Median Filter 4 2.1.2 About Morphology Operation 4 2.1.3 The Algorithm 5 2.1.4 Simulation 6 2.2 Automatic Threshold Calculation and Blob Detection 6 2.2.1 About the Automatic Thresholding 6 2.2.2 About the Blob Detection 7 2.2.3 The Algorithm 7 2.2.4 Simulation 8 2.3 Thresholding and Shape detection 8 2.3.1 About the Shape detection 8 2.3.2 The Algorithm 9 2.4 Scale-space filtering and Watershed clustering 10 2.4.1 About the Scale-space filtering 10 2.4.2 About the Watershed clustering 11 2.4.3 The Algorithm 12 2.5 Thresholding, Watershed, Shape and Size Merge 12 2.5.1 About the Shape and Size Merge 12 2.5.2 The Algorithm 13 2.6 Gradient Diffusion Procedure, Gradient Flow Tracking and Grouping and Local Adaptive Thresholding 13 2.6.1 Gradient Diffusion Procedure 13 2.6.2 About the Gradient Flow Tracking and Grouping 14 2.6.3 The Algorithm 14 2.7 GVF Snake and Zack Thresholding 15 2.7.1 About the GVF Snake 15 2.7.2 About the Zack Thresholding 15 2.7.3 The Algorithm 17 2.8 Wavelet Based Image Segmentation 18 2.8.1 About the Wavelet Based Image Segmentation 18 2.8.2 The Algorithm 18 2.8.3 Simulation 18 2.9 Image Preprocessing, Watershed and Hybrid Fragments 19 2.9.1 About the Image Preprocessing 19 2.9.2 About the Hybrid Fragments 20 2.9.3 The Algorithm 20 2.10 Interactive Cell Segmentation with Random Walker Improvements and Precomputations 21 2.10.1 About the Random Walker Improvements 21 2.10.2 About the Precomputations 21 2.10.3 The Algorithm 21 2.10.4 Simulation 22 2.11 SLIC and MRF 23 2.11.1 About the SLIC 23 2.11.2 About the MRF 23 2.11.3 The Algorithm 24 2.12 Supervoxels and Gaussian mixture models 25 2.12.1 About the Supervoxels 25 2.12.2 About the Gaussian mixture models 25 2.12.3 The Algorithm 26 2.13 Over-segmentation and Hierarchical region merging 26 2.13.1 Over-segmentation 26 2.13.2 Hierarchical region merging 26 2.13.3 The Algorithm 26 2.14 Summary 27 Chapter 3 Reviewing Region Splitting Algorithm for Clumping or Overlapping Cells Region 28 3.1 Deformable Model-Guided Split and Merge 28 3.1.1 About the Deformable Model-Guided Split and Merge 28 3.1.2 The Algorithm 29 3.2 Probabilistic Cell Shape Model and Object Function Minimization 29 3.2.1 Object Functions with Shape Modeling 29 3.2.2 The Algorithm 30 3.3 Morphological Difference and Shortest Path 30 3.3.1 Morphological Difference 30 3.3.2 Shortest Path 31 3.3.3 The Algorithm 31 3.4 Morphology Analysis, Seed Growing Technique and Shortest Path 32 3.4.1 Morphology Analysis 32 3.4.2 Seed Growing Technique 33 3.4.3 The Algorithm 34 3.5 Methodology for Splitting the Cluster 34 3.5.1 Methodology for Splitting the Cluster 34 3.5.2 The Algorithm 36 Chapter 4 Proposed 3D Cell Segmentation Method 37 4.1 Introduction 37 4.2 Proposed Automatic Adaptive Thresholding 41 4.3 Proposed Improved Shortest Path Segmentation 44 4.3.1 Convex region 44 4.3.2 Splitting point 45 4.3.3 Morphology operation 46 4.3.4 Improved shortest path segmentation method 47 4.4 Proposed 3D cell labeling 51 4.5 Summary of the proposed algorithm 53 4.6 Analysis of our proposed algorithm 61 Chapter 5 Simulations 65 5.1 Database 65 5.2 Comparison to the existed methods 65 5.2.1 Visual comparison 65 Chapter 6 Conclusion and Future work 93 6.1 Conclusion 93 6.2 Future work 94 REFERENCE 95 | |
| dc.language.iso | en | |
| dc.subject | 細胞影像前處理 | zh_TW |
| dc.subject | 細胞切割 | zh_TW |
| dc.subject | 影像切割 | zh_TW |
| dc.subject | image segmentatio | en |
| dc.subject | cell segmentation | en |
| dc.subject | cell image preprocessing | en |
| dc.title | 影像切割之醫學細胞追蹤與分析 | zh_TW |
| dc.title | Cell Tracing and Analysis Using Image Segmentation Algorithms | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 郭景明,許文良,王鵬華 | |
| dc.subject.keyword | 細胞切割,影像切割,細胞影像前處理, | zh_TW |
| dc.subject.keyword | cell segmentation,image segmentatio,cell image preprocessing, | en |
| dc.relation.page | 98 | |
| dc.identifier.doi | 10.6342/NTU201602189 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-08-10 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 7.55 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
