Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用數學科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49958
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor薛克民(Keh-Ming Shyue)
dc.contributor.authorYu-An Chenen
dc.contributor.author陳昱安zh_TW
dc.date.accessioned2021-06-15T12:26:47Z-
dc.date.available2016-08-24
dc.date.copyright2016-08-24
dc.date.issued2016
dc.date.submitted2016-08-10
dc.identifier.citation(1) R. J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations, Steady State and Time Dependent Problems, SIAM, 2007
(2) R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, 2002
(3) R. J. LeVeque, Numerical Methods for Conservation Laws, Brikhauser-Verlag, Basel, 1990
(4) W. Cai, S. Deng, An upwinding embedded boundary method for Maxwell's equations in media with material interfaces: 2D case, Journal of Computational Physics 190 (2003) 159-183
(5) C. Xue, S. Deng, An upwinding boundary condition capturing method for Maxwell's equations in media with material interfaces, Journal of Computational Physics 225 (2007) 342-362
(6) C. Zhang, R. J. LeVeque, The immersed interface method for acoustic wave equations with discontinuous coefficients, Wave Motion 25(3) (1997) 237-263
(7) S. Deng, On the immersed interface method for solving time-domain Maxwell’s equations in materials with curved dielectric interfaces, Computer Physics Communications 179(2008) 791-800
(8) S. Zhao, G. W. Wei, High-order FDTD methods via derivative matching for Maxwell's equations with material interfaces, Journal of Computational Physics 200(2004) 60-103
(9) T. Aslam, A partial differential equation approach to multidimensional extrapolation, Journal of Computational Physics 193(2003) 349-355
(10) B. Lombard, J. Piraux, Numerical treatment of two-dimensional interfaces for acoustic and elastic waves, Journal of Computational Physics 195(2004), 90-116
(11) K. Umashankar, A. Taflove, Computational Electrodynamics, Artech Hourse, Boston, 1993
(12) A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, third ed, Artech Hourse, Boston, 2005
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49958-
dc.description.abstract此篇論文主要是在探討線性雙曲線型偏微分方程式系統界面問題的數值方法。在界面上,通常需要滿足邊界條件,而系統的參數在此也是不連續的。這樣的問題在物理模擬中很常見。譬如說,電磁波從一個介質傳遞至另一個介質中。雙曲線型偏微分方程的標準數值方法通常只試用於係數為連續函數的情況,而在界面問題上,這些方法會失效。因此,在界面週邊必須要做特殊處理。我們介紹兩種以卡式坐標系網格為基準的方法 - 'Ghost Fluid'方法及 'Immersed Interface'方法 - 來處理不連續的邊界條件。zh_TW
dc.description.abstractIn this thesis, we investigate the numerical techniques for solving interface problem of linear hyperbolic system of equations with piecewise constant coefficients and jump conditions across the interface. Such problem arises naturally in practical physics, for example, electromagnetic waves propagating from one material to the other. Standard numerical techniques for solving hyperbolic systems fail near the interface, and special treatments must be offered. Two Cartesian-based methods, 'ghost fluid method' and 'immersed interface method', are introduced to catch the jump discontinuity.en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:26:47Z (GMT). No. of bitstreams: 1
ntu-105-R03246009-1.pdf: 1154971 bytes, checksum: 313d157bf44fa9ea034aeb299bfecbe0 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents致謝 i
中⽂摘要 ii
Abstract iii
Contents iv
List of Figures vii
List of Tables xv
1 Introduction 1
1.1 Model problems 1
1.2 Literature review 13
1.3 Thesis goal 15
2 Hyperbolic Problem without Interface 16
2.1 One-dimensional numerical method 17
2.1.1 Scheme of choice 19
2.1.2 Lax-wendroff method 19
2.1.3 CFL condition 20
2.2 Two-dimensional numerical method 22
2.2.1 Lax-wendroff method 23
2.3 Numerical results 24
2.3.1 Scalar case 25
2.3.2 System case 28
3 One-Dimensional Hyperbolic Problem with Interfaces 31
3.1 Ghost fluid method 34
3.2 Immersed interface method 39
3.3 Numerical results 43
3.3.1 Scalar case with continuous jump condition 43
3.3.2 Scalar case with discontinuous jump condition 46
3.3.3 System case with continuous jump condition 49
3.3.4 System case with discontinuous jump condition 52
4 Two-Dimensional Hyperbolic Problem with Interfaces 56
4.1 Ghost fluid method 59
4.2 Immersed interface method 62
4.3 Numerical results 69
4.3.1 Quasi one-dimensional case 69
4.3.2 Two-dimensional case with rectangular-shaped interface 75
5 Conclusion 83
Appendices 85
A Smoothing method 85
B Interface jump conditions for two-dimensional Maxwell’s equations in immersed interface method 86
References 91
dc.language.isoen
dc.subjectimmersed interface 方法zh_TW
dc.subject線性雙曲線型偏微分方程式zh_TW
dc.subject界面問題zh_TW
dc.subjectghost fluid 方法zh_TW
dc.subjectImmersed Interface Methoden
dc.subjectLinear hyperbolic systemen
dc.subjectInterface problemen
dc.subjectGhost Fluid Methoden
dc.title雙曲線型線性偏微分方程式界面問題的數值方法zh_TW
dc.titleNumerical Schemes for Linear Hyperbolic Problems with Interfacesen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee郭志禹(Chih-Yu Kuo),牛仰堯
dc.subject.keyword線性雙曲線型偏微分方程式,界面問題,ghost fluid 方法,immersed interface 方法,zh_TW
dc.subject.keywordLinear hyperbolic system,Interface problem,Ghost Fluid Method,Immersed Interface Method,en
dc.relation.page92
dc.identifier.doi10.6342/NTU201602171
dc.rights.note有償授權
dc.date.accepted2016-08-10
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept應用數學科學研究所zh_TW
顯示於系所單位:應用數學科學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
1.13 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved