Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49930
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳為堅(Wei J. Chen)
dc.contributor.authorAn-Chi Chenen
dc.contributor.author陳安祺zh_TW
dc.date.accessioned2021-06-15T12:26:21Z-
dc.date.available2018-09-01
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-08-10
dc.identifier.citationAksoy-Poyraz C, Poyraz BC, Turan S and Arikan MK (2011). Minor physical anomalies and neurological soft signs in patients with schizophrenia and their siblings. Psychiatry Res 190: 85-90.
Ambrosio-Gallardo F, Cruz-Fuentes C, Heinze-Martin G, Caraveo-Anduaga J and Cortes-Sotres J (2015). Study of minor physical anomalies in complete nuclear Mexican families. Evidence of neurodevelopmental problems in schizophrenia. PLoS One 10: e0117080.
Andreasen N (1983). The scale for the assessment of negative symptoms (SANS). Iowa City, University of Iowa.
Andreasen N (1984). The scale for the assessment of positive symp-toms (SAPS). Iowa City, University of Iowa.
Annett M (1967). The binomial distribution of right, mixed and left handedness. Q J Exp Psychol 19: 327-333.
Annett M and Moran P (2006). Schizotypy is increased in mixed-handers, especially right-handed writers who use the left hand for primary actions. Schizophr Res.
Autti-Ramo I, Gaily E and Granstrom ML (1992). Dysmorphic features in offspring of alcoholic mothers. Arch Dis Child 67: 712-716.
Balan S, Iwayama Y, Toyota T, Toyoshima M, Maekawa M and Yoshikawa T (2014). 22q11.2 deletion carriers and schizophrenia-associated novel variants. Br J Psychiatry 204: 398-399.
Bassett AS, Chow EW and Weksberg R (2000). Chromosomal abnormalities and schizophrenia. Am J Med Genet 97: 45-51.
Bassett AS, Costain G, Fung WL, Russell KJ, Pierce L, Kapadia R, et al. (2010). Clinically detectable copy number variations in a Canadian catchment population of schizophrenia. J Psychiatr Res 44: 1005-1009.
Bishop DV (2002). Motor immaturity and specific speech and language impairment: evidence for a common genetic basis. Am J Med Genet 114: 56-63.
Briggs GG and Nebes RD (1975). Patterns of hand preference in a student population. Cortex 11: 230-238.
Brunetti-Pierri N, Berg JS, Scaglia F, Belmont J, Bacino CA, Sahoo T, et al. (2008). Recurrent reciprocal 1q21.1 deletions and duplications associated with microcephaly or macrocephaly and developmental and behavioral abnormalities. Nat Genet 40: 1466-1471.
Cardno AG and Gottesman, II (2000). Twin studies of schizophrenia: from bow-and-arrow concordances to star wars Mx and functional genomics. Am J Med Genet 97: 12-17.
Chen WJ, Liu SK, Chang CJ, Lien YJ, Chang YH and Hwu HG (1998). Sustained attention deficit and schizotypal personality features in nonpsychotic relatives of schizophrenic patients. Am J Psychiatry 155: 1214-1220.
Chen WJ and Su CH (2006). Handedness and schizotypy in non-clinical populations: influence of handedness measures and age on the relationship. Laterality 11: 331-349.
Chung JH, Cai J, Suskin BG, Zhang Z, Coleman K and Morrow BE (2015). Whole-Genome Sequencing and Integrative Genomic Analysis Approach on Two 22q11.2 Deletion Syndrome Family Trios for Genotype to Phenotype Correlations. Hum Mutat 36: 797-807.
Compton MT, Bollini AM, McKenzie Mack L, Kryda AD, Rutland J, Weiss PS, et al. (2007). Neurological soft signs and minor physical anomalies in patients with schizophrenia and related disorders, their first-degree biological relatives, and non-psychiatric controls. Schizophr Res 94: 64-73.
Compton MT, Chan RC, Walker EF and Buckley PF (2011). Minor physical anomalies: potentially informative vestiges of fetal developmental disruptions in schizophrenia. Int J Dev Neurosci 29: 245-250.
Day NL, Robles N, Richardson G, Geva D, Taylor P, Scher M, et al. (1991). The Effects of Prenatal Alcohol Use on the Growth of Children at Three Years of Age. Alcoholism: Clinical and Experimental Research 15: 67-71.
Dean K, Fearon P, Morgan K, Hutchinson G, Orr K, Chitnis X, et al. (2006). Grey matter correlates of minor physical anomalies in the AeSOP first-episode psychosis study. Br J Psychiatry 189: 221-228.
Dean K, Fearon P, Morgan K, Hutchinson G, Orr K, Chitnis X, et al. (2006). Grey matter correlates of minor physical anomalies in the AeSOP first-episode psychosis study. Br J Psychiatry 189: 221-228.
Dent EW, Barnes AM, Tang F and Kalil K (2004). Netrin-1 and semaphorin 3A promote or inhibit cortical axon branching, respectively, by reorganization of the cytoskeleton. J Neurosci 24: 3002-3012.
Dragovic M and Hammond G (2005). Handedness in schizophrenia: a quantitative review of evidence. Acta Psychiatr Scand 111: 410-419.
Dudbridge F (2013). Power and predictive accuracy of polygenic risk scores. PLoS Genet 9: e1003348.
Dyshniku F, Murray ME, Fazio RL, Lykins AD and Cantor JM (2015). Minor Physical Anomalies as a Window into the Prenatal Origins of Pedophilia. Archives of Sexual Behavior 44: 2151-2159.
Euesden J, Lewis CM and O'Reilly PF (2015). PRSice: Polygenic Risk Score software. Bioinformatics 31: 1466-1468.
Gassab L, Aissi M, Slama H, Gaha L and Mechri A (2013). Prevalence and score of minor physical anomalies in patients with schizophrenia and their first degree relatives: a Tunisian study. Compr Psychiatry 54: 575-580.
Gourion D, Goldberger C, Bourdel MC, Jean Bayle F, Loo H and Krebs MO (2004). Minor physical anomalies in patients with schizophrenia and their parents: prevalence and pattern of craniofacial abnormalities. Psychiatry Res 125: 21-28.
Grant A, Fathalli F, Rouleau G, Joober R and Flores C (2012). Association between schizophrenia and genetic variation in DCC: A case-control study. Schizophrenia Research 137: 26-31.
Green MF, Satz P, Soper HV and Kharabi F (1987). Relationship between Physical Anomalies and Age at Onset of Schizophrenia. American Journal of Psychiatry 144: 666-667.
Green MF, Satz P, Gaier DJ, Ganzell S and Kharabi F (1989). Minor physical anomalies in schizophrenia. Schizophr Bull 15: 91-99.
Hajnal A, Csabi G, Herold R, Jeges S, Halmai T, Trixler D, et al. (2016). Minor physical anomalies are more common among the first-degree unaffected relatives of schizophrenia patients - Results with the Mehes Scale. Psychiatry Res 237: 224-228.
Hamshere ML, Walters JT, Smith R, Richards AL, Green E, Grozeva D, et al. (2013). Genome-wide significant associations in schizophrenia to ITIH3/4, CACNA1C and SDCCAG8, and extensive replication of associations reported by the Schizophrenia PGC. Mol Psychiatry 18: 708-712.
Hata K, Iida J, Iwasaka H, Negoro HI, Ueda F and Kishimoto T (2003). Minor physical anomalies in childhood and adolescent onset schizophrenia. Psychiatry Clin Neurosci 57: 17-21.
Heaton R, Chelune G, Talley J, Kay G and Curtiss G (1993). Wisconsin Card Sorting Test Manual: Revised and expanded. FL, Psychological Assessment Resources.
Hettige NC, Cole CB, Khalid S and De Luca V (2016). Polygenic risk score prediction of antipsychotic dosage in schizophrenia. Schizophr Res 170: 265-270.
Ikeda M, Aleksic B, Kinoshita Y, Okochi T, Kawashima K, Kushima I, et al. (2011). Genome-wide association study of schizophrenia in a Japanese population. Biol Psychiatry 69: 472-478.
International Schizophrenia C, Purcell SM, Wray NR, Stone JL, Visscher PM, O'Donovan MC, et al. (2009). Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460: 748-752.
Ismail B, Cantor-Graae E and McNeil TF (2000). Minor physical anomalies in schizophrenia: cognitive, neurological and other clinical correlates. J Psychiatr Res 34: 45-56.
John JP, Arunachalam V, Ratnam B and Isaac MK (2008). Expanding the schizophrenia phenotype: a composite evaluation of neurodevelopmental markers. Compr Psychiatry 49: 78-86.
Johnston DW, Nicholls MER, Shah M and Shields MA (2013). Handedness, health and cognitive development: evidence from children in the National Longitudinal Survey of Youth. Journal of the Royal Statistical Society: Series A (Statistics in Society) 176: 841-860.
Kim D, Raine A, Triphon N and Green MF (1992). Mixed handedness and features of schizotypal personality in a nonclinical sample. J Nerv Ment Dis 180: 133-135.
Konishi Y, Yang LB, He P, Lindholm K, Lu B, Li R, et al. (2014). Deficiency of GDNF Receptor GFRalpha1 in Alzheimer's Neurons Results in Neuronal Death. J Neurosci 34: 13127-13138.
Lin AS, Chang SS, Lin SH, Peng YC, Hwu HG and Chen WJ (2015). Minor physical anomalies and craniofacial measures in patients with treatment-resistant schizophrenia. Psychol Med 45: 1839-1850.
Lin CCH, Chen WJ, Yang H-J, Hsiao CK and Tien AY (2000). Performance on the Wisconsin Card Sorting Test Among Adolescents in Taiwan: Norms, Factorial Structure, and Relation to Schizotypy. Journal of Clinical and Experimental Neuropsychology (Neuropsychology, Development and Cognition: Section A) 22: 69-79.
Liu SK, Hwu HG and Chen WJ (1997). Clinical symptom dimensions and deficits on the Continuous Performance Test in schizophrenia. Schizophr Res 25: 211-219.
Liu YH, Cheng CC, Ho CC, Chao WT, Pei RJ, Hsu YH, et al. (2011). Plectin deficiency on cytoskeletal disorganization and transformation of human liver cells in vitro. Med Mol Morphol 44: 21-26.
Lohr JB and Flynn K (1993). Minor physical anomalies in schizophrenia and mood disorders. Schizophr Bull 19: 551-556.
Loo R and Schneider R (1979). An evaluation of the Briggs-Nebes modified version of Annett's handedness inventory. Cortex 15: 683-686.
Manitt C, Nikolakopoulou AM, Almario DR, Nguyen SA and Cohen-Cory S (2009). Netrin participates in the development of retinotectal synaptic connectivity by modulating axon arborization and synapse formation in the developing brain. J Neurosci 29: 11065-11077.
McCarthy SE, Makarov V, Kirov G, Addington AM, McClellan J, Yoon S, et al. (2009). Microduplications of 16p11.2 are associated with schizophrenia. Nat Genet 41: 1223-1227.
McDonald-McGinn DM, Sullivan KE, Marino B, Philip N, Swillen A, Vorstman JA, et al. (2015). 22q11.2 deletion syndrome. Nat Rev Dis Primers 1: 15071.
McGrath J, El-Saadi O, Grim V, Cardy S, Chapple B, Chant D, et al. (2002). Minor physical anomalies and quantitative measures of the head and face in patients with psychosis. Arch Gen Psychiatry 59: 458-464.
McGrath JJ, van Os J, Hoyos C, Jones PB, Harvey I and Murray RM (1995). Minor physical anomalies in psychoses: associations with clinical and putative aetiological variables. Schizophr Res 18: 9-20.
Murphy KC (2002). Schizophrenia and velo-cardio-facial syndrome. Lancet 359: 426-430.
Nuechterlein KH (1991). Vigilance in schizophrenia and related disorders. Neuropsychology, psychophysiology, and information processing. Steinhauer SR, Gruzelier JH and Zubin J. New York, NY, US, Elsevier Science: 397-433.
Nurnberger JI, Jr., Blehar MC, Kaufmann CA, York-Cooler C, Simpson SG, Harkavy-Friedman J, et al. (1994). Diagnostic interview for genetic studies. Rationale, unique features, and training. NIMH Genetics Initiative. Arch Gen Psychiatry 51: 849-859; discussion 863-844.
O'Callaghan E, Larkin C, Kinsella A and Waddington JL (1991). Familial, obstetric, and other clinical correlates of minor physical anomalies in schizophrenia. Am J Psychiatry 148: 479-483.
O'Callaghan E, Buckley P, Madigan C, Redmond O, Stack JP, Kinsella A, et al. (1995). The relationship of minor physical anomalies and other putative indices of developmental disturbance in schizophrenia to abnormalities of cerebral structure on magnetic resonance imaging. Biol Psychiatry 38: 516-524.
O'Donovan MC, Craddock N, Norton N, Williams H, Peirce T, Moskvina V, et al. (2008). Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nat Genet 40: 1053-1055.
Oosthuizen P, Lambert T and Castle DJ (1998). Dysmorphic concern: prevalence and associations with clinical variables. Aust N Z J Psychiatry 32: 129-132.
Preti A, Sardu C and Piga A (2007). Mixed-handedness is associated with the reporting of psychotic-like beliefs in a non-clinical Italian sample. Schizophrenia Research 92: 15-23.
Rees E, Kirov G, Walters JT, Richards AL, Howrigan D, Kavanagh DH, et al. (2015). Analysis of exome sequence in 604 trios for recessive genotypes in schizophrenia. Transl Psychiatry 5: e607.
Riese ML (2001). Discordant and nondiscordant twins: comparative multimethod risk assessment in the neonatal period. J Dev Behav Pediatr 22: 102-112.
Rietschel M, Mattheisen M, Degenhardt F, Genetic R, Outcome in P, Muhleisen TW, et al. (2012). Association between genetic variation in a region on chromosome 11 and schizophrenia in large samples from Europe. Mol Psychiatry 17: 906-917.
Ripke S, O'Dushlaine C, Chambert K, Moran JL, Kahler AK, Akterin S, et al. (2013). Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat Genet 45: 1150-1159.
Saha S, Chant D, Welham J and McGrath J (2005). A systematic review of the prevalence of schizophrenia. PLoS Med 2: e141.
Schizophrenia Working Group of the Psychiatric Genomics C (2014). Biological insights from 108 schizophrenia-associated genetic loci. Nature 511: 421-427.
Sullivan PF, Kendler KS and Neale MC (2003). Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry 60: 1187-1192.
Tarrant CJ and Jones PB (1999). Precursors to schizophrenia: do biological markers have specificity? Can J Psychiatry.
Tuzova M, Richmond J, Wolpowitz D, Curiel-Lewandrowski C, Chaney K, Kupper T, et al. (2015). CCR4+T cell recruitment to the skin in mycosis fungoides: potential contributions by thymic stromal lymphopoietin and interleukin-16. Leuk Lymphoma 56: 440-449.
van Erp TG, Preda A, Nguyen D, Faziola L, Turner J, Bustillo J, et al. (2014). Converting positive and negative symptom scores between PANSS and SAPS/SANS. Schizophr Res 152: 289-294.
van Os J and Kapur S (2009). Schizophrenia. Lancet.
Waddington JL, Lane A, Larkin C and O'Callaghan E (1999). The neurodevelopmental basis of schizophrenia: clinical clues from cerebro-craniofacial dysmorphogenesis, and the roots of a lifetime trajectory of disease. Biol Psychiatry 46: 31-39.
Wall ME, Rachlin A, Otey CA and Loboa EG (2007). Human adipose-derived adult stem cells upregulate palladin during osteogenesis and in response to cyclic tensile strain. Am J Physiol Cell Physiol 293: C1532-1538.
Xu T, Chan RC and Compton MT (2011). Minor physical anomalies in patients with schizophrenia, unaffected first-degree relatives, and healthy controls: a meta-analysis. PLoS One 6: e24129.
Yang J, Lee SH, Goddard ME and Visscher PM (2011). GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet 88: 76-82.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49930-
dc.description.abstract背景與目的
思覺失調症患者及其一等親出現細微身體特徵異常或頭顱顏面特徵的機率較一般人口高;而思覺失調症的部分臨床表徵也被發現與較多的頭顱顏面特徵有關,顯示這些特徵可能扮演修飾因子的角色。根據家族研究,這些特徵具有一定的遺傳率,但目前少有已知的基因標誌與其相關。本研究透過全基因體關聯分析,尋找與思覺失調症患者頭顱顏面特徵有關之遺傳變異,並評估以此建立的多基因風險分數是否可以預測這些特徵。此外,本研究探討這些頭顱顏面特徵與哪些臨床表徵有關,以進一步瞭解這些頭顱顏面特徵相關之多基因在思覺失調症臨床表現上可能扮演的角色。
方法
本研究設計採用全為病例研究,樣本來自台灣精神分裂症之全基因體研究計畫 (Schizophrenia Trio Genomic Study of Taiwan),總共納入1,057位思覺失調症患者。對每位病人進行7項頭顱顏面特徵的測量、神經認知功能測驗、遺傳研究診斷問卷訪談 (Diagnostic Interview for Genetic Studies),以及使用精神病基因體聯盟 (Psychiatric Genomics Consortium) 所設計的PsychChip進行60萬個位點的基因型定型。利用基因標誌為基礎所估計之遺傳率,我們挑選該值可估出的三項頭顱顏面特徵 (額突、鼻上翹、頭圍) 進行後續分析。比較具這些頭顱顏面特徵者與不具有任一特徵者,以探討其與遺傳變異位點的相關性。我們先將病人以分層隨機分派方式,分成探索組 (n=527) 與驗證組 (n=530)。針對探索組病人,先以PLINK (v1.07) 軟體估出每一遺傳變異的相關勝算比及其顯著水準。然後再以PRSice (v1.25) 軟體有系統地變化顯著水準值,計算出對應的多基因風險分數。從中找出解釋力最佳的一組遺傳變異,再將相關的多基因風險係數直接套用在驗證組,看是否仍能成功區分有頭顱顏面特徵者與無這些特徵者。對於納入最佳的多基因風險分數中的遺傳變異,則以Ingenuity Pathway Analysis 軟體進行路徑分析。
結果
比起不具任一頭顱顏面特徵的病人,具有較多頭顱顏面特徵的病人,其混合慣用手的比率較低,且持續專注力的表現較差 (p<0.05);但並未發現這些特徵與臨床症狀有關聯。在針對基因定型資料進行品質管控並剔除高度連鎖不平衡 (linkage disequilibrium) 的基因位點後,共有196,770個位點被納入後續分析。在探索組樣本中,沒有任何個別位點與頭顱顏面特徵的關聯達到全基因體顯著水準。多基因風險分數分析中,我們發現在顯著水準閾值為0.00105的情況下,由150個位點組合而成的分數,可以在驗證組成功地預測病人頭顱顏面特徵的出現 (p=0.008)。這些遺傳變異可對應至75個已知基因位置;路徑分析的結果暗示它們可能牽涉一些DNA複製與脂質代謝等功能。
結論
本研究成功地建立一組由150個遺傳變異組成的多基因風險分數,通過探索組與驗證組的測試,可以預測思覺失調症病人之頭顱顏面特徵。由路徑分析所暗示的功能,可以作為未來進一步了解這些頭顱顏面特徵相關基因如何修飾思覺失調症的基礎。
zh_TW
dc.description.abstractBackground
Patients with schizophrenia and their first-degree relatives show more minor physical anomalies (MPAs) and certain craniofacial quantifications than the general population. Higher frequencies of several clinical characteristics were also observed in schizophrenia patients with those MPAs or craniofacial quantifications, indicating the craniofacial features might serve as a potential modifier. Family studies found moderate heritability of the craniofacial features, but to date no large-scale genetic study was conducted to identify their genetic markers. This study aims to 1) use genome-wide association studies (GWAS) approach to identify potential genetic variants contributing to the presence of the craniofacial features in schizophrenia, and evaluates their genetic contribution by means of polygenic risk score analysis; and 2) examine the relationships between the craniofacial features and clinical characteristics in schizophrenia.
Methods
This study was a case-only design (n = 1,057), and the study sample was from Schizophrenia Trio Genomic Study of Taiwan project. Several tools were applied for data collection, including a 7-item questionnaire for MPAs and craniofacial quantifications, the Diagnostic Interview for Genetic Studies, neurocognitive tests, and PsychChip microarray for genotyping, which was developed by Psychiatric Genomics Consortium and contained 600,000 markers. We kept MPAs items with available SNPs-based heritability (frontal bossing, nostril anteverted and head circumference beyond one standard deviation) for further analysis. The patients were divided into two groups by stratified randomization, the learning set (n = 527) and the testing set (n=530). The association analysis for searching the related genetic markers was conducted using PLINK (v1.07) in the learning set, by comparing patients with any one of the three features to those without. The significance level and odds ratio of each genetic variant were derived and applied in the testing set for polygenic risk score analysis using PRSice (v1.25), a software featuring finding the best-fit subset of genetic variants. For those genetic variants included in the final polygenic risk score, they were subjected to pathway analysis using Ingenuity Pathway Analysis.
Results
After data quality control and excluding genetic variants with high linkage disequilibrium, a total of 1,057 schizophrenia patients and 196,770 genetic variants remained for final analysis. Patients with more craniofacial features showed higher frequencies of being fully-left and fully-right handers and poorer CPT performance (p<0.05), but no associations between craniofacial features and clinical symptoms were identified. In the learning set, no single marker reached the genome-wide significance level. A polygenic risk score consisting of 150 genetic variants was significantly associated with patients with more MPAs in the testing set, with a p-value threshold at 0.00105 (p = 0.008). Totally 75 genes were mapped from the 150 genetic variants, and the results of pathway analysis revealed that the functional annotation of these genes were mainly involved in DNA replication or lipid metabolism pathways.
Conclusions
We successfully identify a polygenic risk score consisting of 150 genetic variants via learning and testing sets that could predict the presence of craniofacial features in schizophrenia patients. Potential functions revealed in pathway analysis could shed light for future studies on the modifier roles of these genetic variants on clinical manifestations of schizophrenia patients.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:26:21Z (GMT). No. of bitstreams: 1
ntu-105-R03849006-1.pdf: 3737645 bytes, checksum: d42d8e4db9485b75e1fc3ca8a845d6a3 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents中文摘要 i
ABSTRACT iii
CONTENTS v
LIST OF TABLES vi
LIST OF FIGURES vii
LIST OF APPENDICES viii
Chapter 1 Introduction 1
Chapter 2 Materials and Methods 4
2.1 Participants 4
2.2 Clinical measurements 5
2.3 Genotyping and quality control 6
2.4 SNPs-based heritability 6
2.5 Genome-wide association analyses 7
2.6 Polygenic risk score profiling 7
2.7 Functional annotation analysis 7
2.8 Analytical strategies 8
Chapter 3 Results 10
Chapter 4 Discussion 13
REFEREENCES 18
TABLES 27
FIGURES 33
APPENDICES 38
dc.language.isoen
dc.title與思覺失調症之頭顱顏面特徵相關之遺傳變異:由多基因風險分數構成的修飾因子zh_TW
dc.titleGenetic Variants Associated with Craniofacial Features in Schizophrenia: Modifiers Derived from Polygenic Risk Scoreen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蕭朱杏(Chuhsing Kate Hsiao),郭柏秀(Po-Hsiu Kuo),劉智民(Chih-Min Liu)
dc.subject.keyword思覺失調症,細微身體特徵異常,頭顱顏面特徵,多基因風險分數,zh_TW
dc.subject.keywordSchizophrenia,Minor physical anomalies,Craniofacial features,Polygenic risk score,en
dc.relation.page66
dc.identifier.doi10.6342/NTU201602259
dc.rights.note有償授權
dc.date.accepted2016-08-10
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept流行病學與預防醫學研究所zh_TW
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
3.65 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved