Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用物理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49927
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳政維
dc.contributor.authorMing-Hsin Panen
dc.contributor.author潘明信zh_TW
dc.date.accessioned2021-06-15T12:26:18Z-
dc.date.available2017-01-01
dc.date.copyright2016-08-24
dc.date.issued2016
dc.date.submitted2016-08-10
dc.identifier.citation1. Y. MAENO, H. HASHIMOTO, K. YOSHIDA, S. NISHIZAKI, T. FUJITA, J. G. BEDNORZ, F. LICHTENBERG, Nature 372, 532 - 534 (1994)
2. T. He et al, Nature 411, 54-56 (2001)
3. A. S. Bhalla, Ruyan Guo, Rustum Roy, Mat Res Innovat (2000) 4:3–26
4. J.M.D. Coey, M. Viret, S. von Molnár , Adv. Phys. 48 (1999) 167–293
5. E. Dagotto et al., Physics Reports 344 (2001) 1-153
6. A. P. Ramirez, J. Phys. Condens. Matter, 9 (1997) 8171–8199
7. Li Zhang, Xia Li, Feifei Wang, Tao Wang, Wangzhou Shi, Materials Research Bulletin 48 (2013) 1088–1092
8. M. C. Viola et al., Chem. Mater. 2002, 14, 812-818
9. S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht1, R. Ramesh2, L. H. Chen, 1994, Science, 264, 413
10. Y. Murakami, H. Kawada, H. Kawata, M. Tanaka, T. Arima, Y. Moritomo, and Y. Tokura, Phys. Rev. Lett. 80, 1932(1998)
11. P. G. deGennes, Phys. Rev. 118, 141(1960)
12. V. A. Sanina, E. I. Golovenchits, V. G. Zalesskii et al, Phys. Rev. B, 80, 224401 (2009)
13. A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, and Y. Tokura, Phys. Rev. B 51, 14103(1995)
14. A. Castro-Couceiro, M. Sanchez-Andujar, B. Rivas-Murias, J. Mira, J. Rivas, M.A . Senaris-Rodriguez, Solid State Sci. 7, 905-911(2005)
15. M. T. Tlili, M. Bejar, E. Dhahri, M. A. Valente, L. C. Costa, E. K. Hlil, The Open Surface Science Journal, 2009, 1, 54-58
16. I. P. Handayani, A. A. Nugroho, S. Riyadi, G. R. Blake, N. Mufti, T. T. M. Palstra, and P. H. M. van Loosdrecht, Phys. REV. B, 92, 205101 (2015)
17. F. Ye et al., Phys. Rev. Lett. 103, 167202 (2009)
18. https://en.wikipedia.org/wiki/Capacitor
19. https://en.wikipedia.org/wiki/Relative_permittivity
20. http://nptel.ac.in/courses/113104005/lecture18a/18_2.htm
21. http://www.uobabylon.edu.iq/uobcoleges/ad_downloads/6_8121_258.pdf
22. http://www.knowlescapacitors.com/File%20Library/Novacap/English/GlobalNavigation/Technical%20Info/Technical%20Brochure/tech_behavior.pdf
23. F. Kremer, A. Schönhals, Broadband Dielectric Spectroscopy (2003) 59-98
24. https://en.wikipedia.org/wiki/Cole%E2%80%93Cole_equation
25. https://en.wikipedia.org/wiki/Arrhenius_equation
26. Feldman, Y., Puzenko, A. and Ryabov, Y. (2006) Dielectric Relaxation Phenomena in Complex Materials, in Fractals, Diffusion, and Relaxation in Disordered Complex Systems: Advances in Chemical Physics, Part A, Volume 133 (eds W. T. Coffey and Y. P. Kalmykov)
27. N. F. Mott, E.A. Davis, Theory of Electrons in a Non-Crystalline Medium ,in Electronic Processes in Non-Crystalline Materials (1979)
28. A. K. JONSCHER, Nature 267, 673 - 679 (23 June 1977)
29. S. S. Ata-Allah, F. M. Sayedahmed, M. Kaiser, A. M. Hashhash, J Mater Sci (2005) 40: 2923
30. C. Cramer, S. Brunklaus, E. Ratai, and Y. Gao, Phys. Rev. Lett. 91.266601(2003)
31. CRAMER, C., et al. High-frequency conductivity plateau and ionic hopping processes in a ternary lithium borate glass. Zeitschrift für Naturforschung A, 1995, 50.7: 613-623.
32. S. R. Elliott, Advances in Physics, vol. 36, Issue 2, p.135-217 (1987)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49927-
dc.description.abstractThe synthesis, characterization and dielectric properties of Praseodymium substituted calcium manganese oxides [PrxCa2-xMnO4] compounds were investigated. The dielectric properties of these compounds were studied in the frequency range from 20 Hz to 1 MHz between 10 K and 300 K.
The low temperature dielectric properties were studied for the x = 0 ~ 0.5 compounds. Dielectric permittivity, dissipation factor, activation energy with thermally activated process, modulus spectra, and Cole-Cole plot have been investigated.
The ε'(T) curves of samples show that the value of real dielectric permittivity has apparent high value (ε' ~ 104) near 270 K for x = 0.2, 0.3, 0.4, 0.5. The tanδ(T) curves of these compounds exhibit dielectric relaxation at low temperature. The highest values in M”-T relation are found to increase with increasing with increasing x for the PrxCa2-xMnO4 system. The peak temperatures of tanδ shift from low to high temperatures as the test frequency  increases in all samples. In these samples we also observed Jonscher power law behavior.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:26:18Z (GMT). No. of bitstreams: 1
ntu-105-R03245004-1.pdf: 5254629 bytes, checksum: a4e7805c3461d227ec2ba7308574d5e6 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontentsTables of Contents
致 謝 i
摘 要 ii
Abstract iii
Tables of Contents iv
List of Graph vi
List of Tables x
Chapter 1 Introduction 1
Chapter 2 General Background 3
a. Complex Permittivity 3
b. The Mechanism of Polarization in Dielectric 5
c. Debye Equation 7
d. Arrhenius law 9
e. Hopping 10
f. Jonscher’s Power Law 11
Chapter 3 Experimental Details 13
a. Sample Preparation 13
i) Ca2MnO4 13
ii) PrxCa2-xMnO4 14
b. X-ray Diffraction 15
c. Dielectric Properties Measurement 16
Chapter 4 Results and Discussion 17
a. Ca2MnO4 17
b. Pr0.1Ca1.9MnO4 25
c. Pr0.2Ca1.8MnO4 33
d. Pr0.3Ca1.7MnO4 42
e. Pr0.4Ca1.6MnO4 51
f. Pr0.5Ca1.5MnO4 59
Chapter 5 Conclusion 67
References 69
 
List of Graph
Figure 2 1 Parallel-plate Capacitor 3
Figure 4 1 The tetragonal structure of PrxCa2-xMnO4 17
Figure 4.a.1 X-ray diffraction pattern of Ca2MnO4 19
Figure 4.a.2 ε'-T of Ca2MnO4 20
Figure 4.a.3 tanδ-T of Ca2MnO4 20
Figure 4.a.4 M'-T relation of Ca2MnO4 21
Figure 4.a.5 Activation energy of Ca2MnO4 deduced from M'-T relation 21
Figure 4.a.6 AC conductivity versus frequency for Ca2MnO4 22
Figure 4.a.7 Activation energy of Ca2MnO4 obtained from AC conductivity 22
Figure 4.a.8 Exponent s versus temperature for Ca2MnO4 23
Figure 4.a.9 Cole-Cole plot of Ca2MnO4 23
Figure 4.b.1 X-ray diffraction pattern of Pr0.1Ca1.9MnO4 27
Figure 4.b.2 ε'-T of Pr0.1Ca1.9MnO4 28
Figure 4.b.3 tanδ-T of Pr0.1Ca1.9MnO4 28
Figure 4.b.4 M'-T relation of Pr0.1Ca1.9MnO4 29
Figure 4.b.5 Activation energy of Pr0.1Ca1.9MnO4 deduced from M'-T relation 29
Figure 4.b.6 AC conductivity versus frequency for Pr0.1Ca1.9MnO4 30
Figure 4.b.7 Activation energy of Pr0.1Ca1.9MnO4 obtained from AC conductivity 30
Figure 4.b.8 Exponent s versus temperature for Pr0.1Ca1.9MnO4 31
Figure 4.b.9 Cole-Cole plot of Pr0.1Ca1.9MnO4 31
Figure 4.c.1 X-ray diffraction pattern of Pr0.2Ca1.8MnO4 35
Figure 4.c.2 ε'-T of Pr0.2Ca1.8MnO4 36
Figure 4.c.3 tanδ-T of Pr0.2Ca1.8MnO4 36
Figure 4.c.4 M'-T relation of Pr0.2Ca1.8MnO4 37
Figure 4.c.5 Activation energy of Pr0.2Ca1.8MnO4 deduced from M'-T relation 37
Figure 4.c.6 Activation energy of Pr0.2Ca1.8MnO4 deduced from M'-T relation 38
Figure 4.c.7 AC conductivity versus frequency for Pr0.2Ca1.8MnO4 38
Figure 4.c.8 Activation energy of Pr0.2Ca1.8MnO4 obtained from AC conductivity 39
Figure 4.c.9 Exponent s versus temperature for Pr0.2Ca1.8MnO4 39
Figure 4.c.10 Cole-Cole plot of Pr0.2Ca1.8MnO4 40
Figure 4.d.1 X-ray diffraction pattern of Pr0.3Ca1.7MnO4 44
Figure 4.d.2 ε'-T of Pr0.3Ca1.7MnO4 45
Figure 4.d.3 tanδ-T of Pr0.3Ca1.7MnO4 45
Figure 4.d.4 M'-T relation of Pr0.3Ca1.7MnO4 46
Figure 4.d.5 Activation energy of Pr0.3Ca1.7MnO4 deduced from M'-T relation 46
Figure 4.d.6 Activation energy of Pr0.3Ca1.7MnO4 deduced from M'-T relation 47
Figure 4.d.7 AC conductivity versus frequency for Pr0.3Ca1.7MnO4 47
Figure 4.d.8 Activation energy of Pr0.3Ca1.7MnO4 obtained from AC conductivity 48
Figure 4.d.9 Exponent s versus temperature for Pr0.3Ca1.7MnO4 48
Figure 4.d.10 Cole-Cole plot of Pr0.3Ca1.7MnO4 49
Figure 4.d.11 Cole-Cole plot of Pr0.3Ca1.7MnO4 49
Figure 4.e.1 X-ray diffraction pattern of Pr0.4Ca1.6MnO4 53
Figure 4.e.2 ε'-T of Pr0.4Ca1.6MnO4 54
Figure 4.e.3 tanδ-T of Pr0.4Ca1.6MnO4 54
Figure 4.e.4 M'-T relation of Pr0.4Ca1.6MnO4 55
Figure 4.e.5 Activation energy of Pr0.4Ca1.6MnO4 deduced from M'-T relation 55
Figure 4.e.6 AC conductivity versus frequency for Pr0.4Ca1.6MnO4 56
Figure 4.e.7 Activation energy of Pr0.4Ca1.6MnO4 obtained from AC conductivity 56
Figure 4.e.8 Exponent s versus temperature for Pr0.4Ca1.6MnO4 57
Figure 4.e.9 Cole-Cole plot of Pr0.4Ca1.6MnO4 57
Figure 4.f.1 X-ray diffraction pattern of Pr0.5Ca1.5MnO4 61
Figure 4.f.2 ε'-T of Pr0.5Ca1.5MnO4 62
Figure 4.f.3 tanδ-T of Pr0.5Ca1.5MnO4 62
Figure 4.f.4 M'-T relation of Pr0.5Ca1.5MnO4 63
Figure 4.f.5 Activation energy of Pr0.5Ca1.5MnO4 deduced from M'-T relation 63
Figure 4.f.6 AC conductivity versus frequency for Pr0.5Ca1.5MnO4 64
Figure 4.f.7 Activation energy of Pr0.5Ca1.5MnO4 obtained from AC conductivity 64
Figure 4.f.8 Exponent s versus temperature for Pr0.5Ca1.5MnO4 65
Figure 4.f.9 Cole-Cole plot of Pr0.5Ca1.5MnO4 65
 
List of Tables
Table 4.1 The lattice constants of the Ca2MnO4 compound.......................................................20
Table 4.2 The lattice constants of the Pr0.1Ca1.9MnO4 compound..............................................28
Table 4.3 The lattice constants of the Pr0.2Ca1.8MnO4 compound..............................................36
Table 4.4 The lattice constants of the Pr0.3Ca1.7MnO4 compound..............................................45
Table 4.5 The lattice constants of the Pr0.4Ca1.6MnO4 compound..............................................54
Table 4.6 The lattice constants of the Pr0.5Ca1.5MnO4 compound..............................................62
Table 5.1 Activation energy with different ratio obtained from M'-T relation..........................68
Table 5.2 Activation energy with different ratio obtained from ac() curves...........................68
dc.language.isoen
dc.subject鈣錳氧化物zh_TW
dc.subject介電性質zh_TW
dc.subject鈣錳氧化物zh_TW
dc.subject介電性質zh_TW
dc.subjectDielectric responseen
dc.subjectManganese Oxideen
dc.title鐠鈣錳氧化物的介電性質zh_TW
dc.titleDielectric Response of Praseodymium Substituted Calcium Manganese Oxides[PrxCa2-xMnO4]en
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳銘堯,林金福
dc.subject.keyword介電性質,鈣錳氧化物,zh_TW
dc.subject.keywordDielectric response,Manganese Oxide,en
dc.relation.page71
dc.identifier.doi10.6342/NTU201602135
dc.rights.note有償授權
dc.date.accepted2016-08-10
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept應用物理研究所zh_TW
顯示於系所單位:應用物理研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
5.13 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved