請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49927完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳政維 | |
| dc.contributor.author | Ming-Hsin Pan | en |
| dc.contributor.author | 潘明信 | zh_TW |
| dc.date.accessioned | 2021-06-15T12:26:18Z | - |
| dc.date.available | 2017-01-01 | |
| dc.date.copyright | 2016-08-24 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-10 | |
| dc.identifier.citation | 1. Y. MAENO, H. HASHIMOTO, K. YOSHIDA, S. NISHIZAKI, T. FUJITA, J. G. BEDNORZ, F. LICHTENBERG, Nature 372, 532 - 534 (1994)
2. T. He et al, Nature 411, 54-56 (2001) 3. A. S. Bhalla, Ruyan Guo, Rustum Roy, Mat Res Innovat (2000) 4:3–26 4. J.M.D. Coey, M. Viret, S. von Molnár , Adv. Phys. 48 (1999) 167–293 5. E. Dagotto et al., Physics Reports 344 (2001) 1-153 6. A. P. Ramirez, J. Phys. Condens. Matter, 9 (1997) 8171–8199 7. Li Zhang, Xia Li, Feifei Wang, Tao Wang, Wangzhou Shi, Materials Research Bulletin 48 (2013) 1088–1092 8. M. C. Viola et al., Chem. Mater. 2002, 14, 812-818 9. S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht1, R. Ramesh2, L. H. Chen, 1994, Science, 264, 413 10. Y. Murakami, H. Kawada, H. Kawata, M. Tanaka, T. Arima, Y. Moritomo, and Y. Tokura, Phys. Rev. Lett. 80, 1932(1998) 11. P. G. deGennes, Phys. Rev. 118, 141(1960) 12. V. A. Sanina, E. I. Golovenchits, V. G. Zalesskii et al, Phys. Rev. B, 80, 224401 (2009) 13. A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, and Y. Tokura, Phys. Rev. B 51, 14103(1995) 14. A. Castro-Couceiro, M. Sanchez-Andujar, B. Rivas-Murias, J. Mira, J. Rivas, M.A . Senaris-Rodriguez, Solid State Sci. 7, 905-911(2005) 15. M. T. Tlili, M. Bejar, E. Dhahri, M. A. Valente, L. C. Costa, E. K. Hlil, The Open Surface Science Journal, 2009, 1, 54-58 16. I. P. Handayani, A. A. Nugroho, S. Riyadi, G. R. Blake, N. Mufti, T. T. M. Palstra, and P. H. M. van Loosdrecht, Phys. REV. B, 92, 205101 (2015) 17. F. Ye et al., Phys. Rev. Lett. 103, 167202 (2009) 18. https://en.wikipedia.org/wiki/Capacitor 19. https://en.wikipedia.org/wiki/Relative_permittivity 20. http://nptel.ac.in/courses/113104005/lecture18a/18_2.htm 21. http://www.uobabylon.edu.iq/uobcoleges/ad_downloads/6_8121_258.pdf 22. http://www.knowlescapacitors.com/File%20Library/Novacap/English/GlobalNavigation/Technical%20Info/Technical%20Brochure/tech_behavior.pdf 23. F. Kremer, A. Schönhals, Broadband Dielectric Spectroscopy (2003) 59-98 24. https://en.wikipedia.org/wiki/Cole%E2%80%93Cole_equation 25. https://en.wikipedia.org/wiki/Arrhenius_equation 26. Feldman, Y., Puzenko, A. and Ryabov, Y. (2006) Dielectric Relaxation Phenomena in Complex Materials, in Fractals, Diffusion, and Relaxation in Disordered Complex Systems: Advances in Chemical Physics, Part A, Volume 133 (eds W. T. Coffey and Y. P. Kalmykov) 27. N. F. Mott, E.A. Davis, Theory of Electrons in a Non-Crystalline Medium ,in Electronic Processes in Non-Crystalline Materials (1979) 28. A. K. JONSCHER, Nature 267, 673 - 679 (23 June 1977) 29. S. S. Ata-Allah, F. M. Sayedahmed, M. Kaiser, A. M. Hashhash, J Mater Sci (2005) 40: 2923 30. C. Cramer, S. Brunklaus, E. Ratai, and Y. Gao, Phys. Rev. Lett. 91.266601(2003) 31. CRAMER, C., et al. High-frequency conductivity plateau and ionic hopping processes in a ternary lithium borate glass. Zeitschrift für Naturforschung A, 1995, 50.7: 613-623. 32. S. R. Elliott, Advances in Physics, vol. 36, Issue 2, p.135-217 (1987) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49927 | - |
| dc.description.abstract | The synthesis, characterization and dielectric properties of Praseodymium substituted calcium manganese oxides [PrxCa2-xMnO4] compounds were investigated. The dielectric properties of these compounds were studied in the frequency range from 20 Hz to 1 MHz between 10 K and 300 K.
The low temperature dielectric properties were studied for the x = 0 ~ 0.5 compounds. Dielectric permittivity, dissipation factor, activation energy with thermally activated process, modulus spectra, and Cole-Cole plot have been investigated. The ε'(T) curves of samples show that the value of real dielectric permittivity has apparent high value (ε' ~ 104) near 270 K for x = 0.2, 0.3, 0.4, 0.5. The tanδ(T) curves of these compounds exhibit dielectric relaxation at low temperature. The highest values in M”-T relation are found to increase with increasing with increasing x for the PrxCa2-xMnO4 system. The peak temperatures of tanδ shift from low to high temperatures as the test frequency increases in all samples. In these samples we also observed Jonscher power law behavior. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T12:26:18Z (GMT). No. of bitstreams: 1 ntu-105-R03245004-1.pdf: 5254629 bytes, checksum: a4e7805c3461d227ec2ba7308574d5e6 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | Tables of Contents
致 謝 i 摘 要 ii Abstract iii Tables of Contents iv List of Graph vi List of Tables x Chapter 1 Introduction 1 Chapter 2 General Background 3 a. Complex Permittivity 3 b. The Mechanism of Polarization in Dielectric 5 c. Debye Equation 7 d. Arrhenius law 9 e. Hopping 10 f. Jonscher’s Power Law 11 Chapter 3 Experimental Details 13 a. Sample Preparation 13 i) Ca2MnO4 13 ii) PrxCa2-xMnO4 14 b. X-ray Diffraction 15 c. Dielectric Properties Measurement 16 Chapter 4 Results and Discussion 17 a. Ca2MnO4 17 b. Pr0.1Ca1.9MnO4 25 c. Pr0.2Ca1.8MnO4 33 d. Pr0.3Ca1.7MnO4 42 e. Pr0.4Ca1.6MnO4 51 f. Pr0.5Ca1.5MnO4 59 Chapter 5 Conclusion 67 References 69 List of Graph Figure 2 1 Parallel-plate Capacitor 3 Figure 4 1 The tetragonal structure of PrxCa2-xMnO4 17 Figure 4.a.1 X-ray diffraction pattern of Ca2MnO4 19 Figure 4.a.2 ε'-T of Ca2MnO4 20 Figure 4.a.3 tanδ-T of Ca2MnO4 20 Figure 4.a.4 M'-T relation of Ca2MnO4 21 Figure 4.a.5 Activation energy of Ca2MnO4 deduced from M'-T relation 21 Figure 4.a.6 AC conductivity versus frequency for Ca2MnO4 22 Figure 4.a.7 Activation energy of Ca2MnO4 obtained from AC conductivity 22 Figure 4.a.8 Exponent s versus temperature for Ca2MnO4 23 Figure 4.a.9 Cole-Cole plot of Ca2MnO4 23 Figure 4.b.1 X-ray diffraction pattern of Pr0.1Ca1.9MnO4 27 Figure 4.b.2 ε'-T of Pr0.1Ca1.9MnO4 28 Figure 4.b.3 tanδ-T of Pr0.1Ca1.9MnO4 28 Figure 4.b.4 M'-T relation of Pr0.1Ca1.9MnO4 29 Figure 4.b.5 Activation energy of Pr0.1Ca1.9MnO4 deduced from M'-T relation 29 Figure 4.b.6 AC conductivity versus frequency for Pr0.1Ca1.9MnO4 30 Figure 4.b.7 Activation energy of Pr0.1Ca1.9MnO4 obtained from AC conductivity 30 Figure 4.b.8 Exponent s versus temperature for Pr0.1Ca1.9MnO4 31 Figure 4.b.9 Cole-Cole plot of Pr0.1Ca1.9MnO4 31 Figure 4.c.1 X-ray diffraction pattern of Pr0.2Ca1.8MnO4 35 Figure 4.c.2 ε'-T of Pr0.2Ca1.8MnO4 36 Figure 4.c.3 tanδ-T of Pr0.2Ca1.8MnO4 36 Figure 4.c.4 M'-T relation of Pr0.2Ca1.8MnO4 37 Figure 4.c.5 Activation energy of Pr0.2Ca1.8MnO4 deduced from M'-T relation 37 Figure 4.c.6 Activation energy of Pr0.2Ca1.8MnO4 deduced from M'-T relation 38 Figure 4.c.7 AC conductivity versus frequency for Pr0.2Ca1.8MnO4 38 Figure 4.c.8 Activation energy of Pr0.2Ca1.8MnO4 obtained from AC conductivity 39 Figure 4.c.9 Exponent s versus temperature for Pr0.2Ca1.8MnO4 39 Figure 4.c.10 Cole-Cole plot of Pr0.2Ca1.8MnO4 40 Figure 4.d.1 X-ray diffraction pattern of Pr0.3Ca1.7MnO4 44 Figure 4.d.2 ε'-T of Pr0.3Ca1.7MnO4 45 Figure 4.d.3 tanδ-T of Pr0.3Ca1.7MnO4 45 Figure 4.d.4 M'-T relation of Pr0.3Ca1.7MnO4 46 Figure 4.d.5 Activation energy of Pr0.3Ca1.7MnO4 deduced from M'-T relation 46 Figure 4.d.6 Activation energy of Pr0.3Ca1.7MnO4 deduced from M'-T relation 47 Figure 4.d.7 AC conductivity versus frequency for Pr0.3Ca1.7MnO4 47 Figure 4.d.8 Activation energy of Pr0.3Ca1.7MnO4 obtained from AC conductivity 48 Figure 4.d.9 Exponent s versus temperature for Pr0.3Ca1.7MnO4 48 Figure 4.d.10 Cole-Cole plot of Pr0.3Ca1.7MnO4 49 Figure 4.d.11 Cole-Cole plot of Pr0.3Ca1.7MnO4 49 Figure 4.e.1 X-ray diffraction pattern of Pr0.4Ca1.6MnO4 53 Figure 4.e.2 ε'-T of Pr0.4Ca1.6MnO4 54 Figure 4.e.3 tanδ-T of Pr0.4Ca1.6MnO4 54 Figure 4.e.4 M'-T relation of Pr0.4Ca1.6MnO4 55 Figure 4.e.5 Activation energy of Pr0.4Ca1.6MnO4 deduced from M'-T relation 55 Figure 4.e.6 AC conductivity versus frequency for Pr0.4Ca1.6MnO4 56 Figure 4.e.7 Activation energy of Pr0.4Ca1.6MnO4 obtained from AC conductivity 56 Figure 4.e.8 Exponent s versus temperature for Pr0.4Ca1.6MnO4 57 Figure 4.e.9 Cole-Cole plot of Pr0.4Ca1.6MnO4 57 Figure 4.f.1 X-ray diffraction pattern of Pr0.5Ca1.5MnO4 61 Figure 4.f.2 ε'-T of Pr0.5Ca1.5MnO4 62 Figure 4.f.3 tanδ-T of Pr0.5Ca1.5MnO4 62 Figure 4.f.4 M'-T relation of Pr0.5Ca1.5MnO4 63 Figure 4.f.5 Activation energy of Pr0.5Ca1.5MnO4 deduced from M'-T relation 63 Figure 4.f.6 AC conductivity versus frequency for Pr0.5Ca1.5MnO4 64 Figure 4.f.7 Activation energy of Pr0.5Ca1.5MnO4 obtained from AC conductivity 64 Figure 4.f.8 Exponent s versus temperature for Pr0.5Ca1.5MnO4 65 Figure 4.f.9 Cole-Cole plot of Pr0.5Ca1.5MnO4 65 List of Tables Table 4.1 The lattice constants of the Ca2MnO4 compound.......................................................20 Table 4.2 The lattice constants of the Pr0.1Ca1.9MnO4 compound..............................................28 Table 4.3 The lattice constants of the Pr0.2Ca1.8MnO4 compound..............................................36 Table 4.4 The lattice constants of the Pr0.3Ca1.7MnO4 compound..............................................45 Table 4.5 The lattice constants of the Pr0.4Ca1.6MnO4 compound..............................................54 Table 4.6 The lattice constants of the Pr0.5Ca1.5MnO4 compound..............................................62 Table 5.1 Activation energy with different ratio obtained from M'-T relation..........................68 Table 5.2 Activation energy with different ratio obtained from ac() curves...........................68 | |
| dc.language.iso | en | |
| dc.subject | 鈣錳氧化物 | zh_TW |
| dc.subject | 介電性質 | zh_TW |
| dc.subject | 鈣錳氧化物 | zh_TW |
| dc.subject | 介電性質 | zh_TW |
| dc.subject | Dielectric response | en |
| dc.subject | Manganese Oxide | en |
| dc.title | 鐠鈣錳氧化物的介電性質 | zh_TW |
| dc.title | Dielectric Response of Praseodymium Substituted Calcium Manganese Oxides[PrxCa2-xMnO4] | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳銘堯,林金福 | |
| dc.subject.keyword | 介電性質,鈣錳氧化物, | zh_TW |
| dc.subject.keyword | Dielectric response,Manganese Oxide, | en |
| dc.relation.page | 71 | |
| dc.identifier.doi | 10.6342/NTU201602135 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-08-10 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 應用物理研究所 | zh_TW |
| 顯示於系所單位: | 應用物理研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 5.13 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
