Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 病理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49920
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林欽塘(Chin-Tarng Lin)
dc.contributor.authorMin-Yao Linen
dc.contributor.author林旻瑤zh_TW
dc.date.accessioned2021-06-15T12:26:11Z-
dc.date.available2018-08-26
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-08-10
dc.identifier.citationBadiglian Filho L, Oshima CT, De Oliveira Lima F, De Oliveira Costa H, De Sousa Damião R, Gomes TS, Gonçalves WJ. Canonical and noncanonical Wnt pathway: a comparison among normal ovary, benign ovarian tumor and ovarian cancer. Oncol Rep. 2009 Feb;21(2):313-20
Deyrup AT, Lee VK, Hill CE, et al. Epstein-Barr virus-associated smooth muscle tumors are distinctive mesenchymal tumors reflecting multiple infection events. A clinicopathologic and molecular analysis of 29 tumors from 19 patients. Am J Surg Pathol. 2006; 30: 75- 82.
Francesca L’Episcopo, Maria F Serapide, Cataldo Tirolo, Nunzio Testa, Salvatore Caniglia, Maria C Morale, Stefano Pluchino and Bianca Marchett. A Wnt1 regulated Frizzled-1/β-Cateninsignaling pathway as a candidate regulatory circuit controlling mesencephalic dopaminergic neuron-astrocyte crosstalk: Therapeutical relevance for neuron survival and neuroprotection. Molecular Neurodegeneration. 2011; 6:49
Greene FL, Page DL, Fleming ID, Fritz AG, Balch CM, Haller DG, Morrow M: AJCC Cancer Staging Manual 6th edition. New York: Springer – Verlag; 2002.
Haixiong Zhang, Hui Cao, Dadao Xu, and Kang Zhu. MicroRNA-92a promotes metastasis of nasopharyngeal carcinoma by targeting the PTEN/AKT pathway. Onco Targets Ther. 2016; 9: 3579–3588.
Huang DY, Lin YT, Jan PS, Hwang YC, Liang ST, Peng Y, Huang CFY, Wu HC and Lin CT. Transcription factor SOX-5 enhances nasopharyngeal carcinoma progression by down-regulating SPARC gene expression. Journal of Pathology J Pathol. 2008; 214: 445–455
Hildesheim A, Apple R, Chen C et al. Association of HLA class I and II alleles and extended haplotypes with nasopharyngeal carcinoma in Taiwan. Journal of the National Cancer Institute. 2002; 94(23): 1780–1789
Habas R and Dawid IB: Dishevelled and Wnt signaling: is the nucleus the final frontier? J Biol. 20054: 2.
Holcombe RF, Marsh JL, Waterman ML, Lin F, Milovanovic T, Truong T. Expression of Wnt ligands and frizzled receptors in colonic mucosa and in colon carcinoma. Mol Pathol. 2002; 55:220–226
Huancai Liu, Yanchun Chen, Fenghua Zhou, Linlin Jie, Leidong Pu, Jie Ju, Fengjie Li, Zhigang Dai, Xin Wang, Shuanhu Zhou. Sox9 regulates hyperexpression of Wnt1 and Fzd1 in human osteosarcoma tissues and cells. Int J Clin Exp Pathol. 2014; 7(8):4795-4805
Hilde Laeremans, Sander S. Rensen, Harry C.J. Ottenheijm, Jos F.M. Smits, W. Matthijs Blankesteijn. Wnt/frizzled signalling modulates the migration and differentiation of immortalized cardiac fibroblasts. Cardiovascular Research. 2010; 87, 514–523.
Ikeda T, Zhang J, Chano T, Mabuchi A, Fukuda A, Kawaguchi H, Nakamura K, Ikegawa S. Identification and characterization of the human long form of Sox5 (L-SOX5) gene. Gene. 2002; 298: 59–68
Johnson ML, Rajamannan N. Diseases of Wnt signaling. Rev Endocr Metab Disord. 2006 Jun;7(1-2):41-9.
J. Ferlay, I. Soerjomataram, M. Ervik, R. Dikshit, S. Eser, C. Mathers, et al. GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11 [Internet]. Lyon, France: International Agency for Research on Cancer. <http://globocan.iarc.fr>, 2013 (accessed 03.15).
Jay D Kormish, Débora Sinner, and Aaron M Zorn. Interactions between SOX factors and Wnt/β-catenin signaling in development and disease. Dev Dyn. 2010; Jan; 239(1): 56–68.
Kwabena FB, Korle Bu Teaching Hospital, Accra, Ghana. Infectious Disease and Cancer in Africa – A medical and Demographical Reality. 2010
Kelly J. Yu, Xiaojiang Gao, Chien-Jen Chen, Xiaohong (Rose) Yang, Scott R. Diehl, Alisa Goldstein, Wan-Lun Hsu, Xueying (Sharon) Liang, Darlene Marti, Mei-Ying Liu, Jen Yang Chen, Mary Carrington, and Allan Hildesheim. Association of human leukocyte antigen (HLA) with nasopharyngeal carcinoma (NPC) in high risk multiplex families in Taiwan. Hum Immunol. 2009 Nov; 70(11): 910–914.
Li-na Liu , Pei-yu Huang3, Zhi-rui Lin, Li-juan Hu, Jian-zhong Liang, Man-zhi Li, Lin-quan Tang, Mu-sheng Zeng, Qian Zhong and Bo-hang Zeng. Journal of Translational Medicine 2013, 11:140
Liebowitz D. Nasopharyngeal carcinoma: the Epstein-Barr virus association. Seminars in Oncology. 1994; 21(3): 376–381
Lin CT, Lin CR, Tan GK, Chen W, Dee AN, Chan WY. The mechanism of Epstein-Barr virus infection in nasopharyngeal carcinoma cells. Am J Pathol. 1997; 150(5): 1745-1756
Lin CT, Wong CI, Chan WY, Tzung KW, Ho JK, Hsu MM, and Chuang SM. Establishment and characterization of two nasopharyngeal carcinoma cell lines. Lab Invest. 1990; 62: 713–724
Lin CT, Chan WY, Chen W, Huang HM, Wu HC, Hsu MM, Chuang SM, and Wang CC. Characterization of seven newly established nasopharyngeal carcinoma cell lines. Lab Invest. 1993; 68: 716–727
Lin CT, Dee AN, Chen W, and Chan WY. Association of Epstein-Barr virus, human papilloma virus, and cytomegalovirus in nine nasopharyngeal carcinoma cell lines. Lab Invest. 1994; 71: 731–736
Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annual review of cell and developmental biology. 2004; 20:781–810
Lefebvre V, Li P, de Crombrugghe B. A new long form of Sox5 (L-Sox5), Sox6 and Sox9 are coexpressed in chondrogenesis and cooperatively activate the type II collagen gene. EMBO J. 1998; 17: 5718–5733
Mengmeng Wang, Huimin Tian, Gang Li, Tingwen Ge, Yudi Liu, Jiuwei Cui, Fujun Han. Oncotarget, Advance Publications 2016
Milovanovic T, Planutis K, Nguyen A, Marsh JL, Lin F, Hope C, Holcombe RF. Expression of Wnt genes and frizzled 1 and 2 receptors in normal breast epithelium and infiltrating breast carcinoma. Int J Oncol. 2004; 25:1337–1342
National Comprehensive Cancer Network. Practice guidelines in oncology – version V.1.2015 (Head and Neck Cancers)
http://www.nccn.org/professionals/ physician_gls/pdf/head-and-neck.pdf
Patel SG, Shah JP: TNM staging of cancers of the head and neck: striving for uniformity among diversity. CA Cancer J Clin 2005, 55(4):242–258.
Tatsumi-Tamori A, Yoshizaki T, Miwa T, Furukawa M: Clinical evaluation of staging system for nasopharyngeal carcinoma: comparison of fourth and fifth editions of UICC TNM classification. Ann Otol Rhinol Laryngol 2000, 109(12 Pt 1):1125–1129
Song LB, Li J, Liao WT et al. The polycomb group protein Bmi-1 represses the tumor suppressor PTEN and induces epithelial-mesenchymal transition in human nasopharyngeal epithelial cells. J. Clin. Invest. 2009; 119: 3626–3636
Simons MJ, Chao SM, Wee GD, Shanmugaratnam K, Goh EH, Ho JHC, Chao JCW, Dharmalingam S, Prasad U, Betuel H, Day NE, deThe G, Eds.G.de The and Y. Ito. Nasopharyngeal carcinoma and histocompatibility antigens. Nasopharyngeal Carcinoma: Etiology and Control. IARC Scientific Publication. 1978; 20: 271
Sugden B and Takada K. Epstein-Barr virus and human cancer: Hokkaido University. Jpn.J. Cancer Res. 2001; 92: 1352-1354
Storlazzi CT, Albano F, Lo Cunsolo C, Doglioni C, Guastadisegni MC, Impera L, Lonoce A, Funes S, Macrì E, Iuzzolino P, Panagopoulos I, Specchia G, Rocchi M. Upregulation of the SOX5 by promoter swapping with the P2RY8 gene in primary splenic follicular lymphoma. Leukemia. 2007; 21(10): 2221-2225
Union for International Cancer Control, Review of Cancer Medicines on the WHO List of Essential Medicines: nasopharyngeal carcinoma.2014 http://www.who.int/selection_medicines/committees/expert/20/applications/NasopharyngealCarcinoma.pdf?ua=1
Wei WI, Sham JS. Nasopharyngeal carcinoma. Lancet. 2005;365:2041–2054.
Wang H, He L, Ma F, Regan MM, Balk SP, Richardson AL, Yuan X. SOX9 regulates low density lipoprotein receptor-related protein 6 (LRP6) and T-cell factor 4 (TCF4) expression and Wnt/β-catenin activation in breast cancer. J Biol Chem. 2013; 288: 6478-6487.
Yazici H, Altun M, Alatli C, Dogan O, Dalay N. c-erbB-2 gene amplification in nasopharyngeal carcinoma. Cancer Invest. 2000;18(1):6-10
Zorn AM, Barish GD, Williams BO, Lavender P, Klymkowsky MW, Varmus HE. Regulation of Wnt signaling by Sox proteins: XSox17 alpha/beta and XSox3 physically interact with beta-catenin. Mol Cell. 1999; 4:487–498.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49920-
dc.description.abstract鼻咽癌發病原因至今仍尚未被研究清楚,探討其原因分為三種─即環境因素、病毒及遺傳因素。鼻咽癌是中國南方、香港、新加坡及台灣等地的華人好發的癌症,過去普遍對於鼻咽癌的認識皆認為其與Epstein-Barr virus (EBV)的感染有極大的關聯性,但是近年來研究認為EBV並非造成鼻咽癌發生的原因,而與造成鼻咽癌惡化有關。本實驗研究的主要目的,就是要觀察與鼻咽癌致病相關的基因及其功能分析。在之前,我們實驗室曾建立十株鼻咽癌細胞株。我們使用cDNA微陣列分析(cDNA microarray analysis)去比較鼻咽癌細胞株及正常鼻咽黏膜上皮細胞株之間的表現差異,再經由即時定量聚合酶連鎖反應(Quantitative RT-PCR)及西方點墨法(Western Blotting)去研究而發現有很多基因在鼻咽癌細胞中的表現量有顯著異常的變化。我們從這些基因中挑出了FZD1基因來做本篇研究主軸,進而去探討FZD1在鼻咽癌細胞中所扮演的角色。我們發現FZD1基因在鼻咽癌細胞中的表現量有顯著的上升。然而,在40個鼻咽癌病人切片中也可以看到有52.5%有FZD1的高度表現。至今尚未有研究報導FZD1與鼻咽癌之間的關係,所以我們藉此進而深入研究FZD1對鼻咽癌的病理機理所佔的角色及其功能。首先,我們利用qRT-PCR分析正常鼻咽上皮細胞及鼻咽癌細胞株之間FZD1基因表現的差異,發現FZD1在NPC-TW01有高度的表現,此外,再利用免疫組織染色法及西方點墨法發現FZD1在不同鼻咽癌細胞株中蛋白表現量均有增加的現象。為了進一步研究FZD1對於鼻咽癌細胞株中所扮演的角色,我們利用干擾質體(shRNA)轉染鼻咽癌細胞株NPC-TW01,我們發現轉染的鼻咽癌細胞株可以顯著降低FZD1的mRNA和蛋白質表現。接著進而發現,其顯著的降低鼻咽癌細胞株的增生、轉移及侵襲力,而會增加鼻咽癌細胞的凋亡。在活體的動物實驗中,我們利用免疫不全小鼠(NOD SCID),經由異種移植的實驗數據中發現,經由shFZD1轉染的鼻咽癌細胞(NPC-TW01)在第7週時,腫瘤的重量及體積皆顯著的降低。此篇研究發現FZD1與鼻咽癌的增生、轉移、入侵及凋亡有關聯性,這樣的發現對於未來在鼻咽癌的分子標靶治療具有一定的潛力。
在過去的研究報告中,發現有一些SOX家族可以與WNT訊號途徑有相互作用,在我們先前的研究中, SOX5在鼻咽癌細胞中也有高度的表現,而SOX5與FZD1之間的關係尚未被研究,透過這樣的發現,進而我們去探討SOX5與FZD1之間是否存在關聯性。在研究結果中發現,SOX5與FZD1之間存在著互相調控的關係。
zh_TW
dc.description.abstractNPC is one of the most common cancers among Chinese living in southern China, Hong Kong, Singapore and Taiwan. The pathogenesis of Nasopharyngeal Carcinoma (NPC) is still not well defined yet. Many investigators have prepared three possible factors for the pathogenesis of NPC, the environmental factors, virus infection factor and genetic factors. In the past, universally understanding of NPC is considered to have a great relevance with Epstein-Barr virus (EBV) infection. However, current studies have reported that EBV behaves more likely as progression factor but not initiation factors. The aim of this research is to find out the genetic attention of NPC. First of all, using cDNA microarray analysis of mRNA expression between NPC cell lines and normal nasal mucosal epithelial cells, we found that the expression of many genes significantly increased in NPC cell lines by quantitative RT-PCR and Western blot analysis. According to the cDNA microarray data, we selected FZD1 gene and investigated its biological functions in NPC. FZD1 was significantly increased in NPC cell lines, especially in NPC-TW01N1 cell lines. And the result also can see in NPC patients’ biopsy specimens. In 40 cases of NPC patients’ biopsy, 52.5% had high expression of FZD1. The relationship between FZD1 and NPC is still not clearly reported. For the reason we used qRT-PCR and Western bloting to analyze the mRNA and protein levels of normal nasal mucosal epithelial cells and NPC. We found that both of mRNA and protein levels are significantly increased in NPC cell lines. To further identify the functional roles of FZD1 gene in NPC, we utilized FZD1 shRNA-lentiviral vector to knockdown the expression of FZD1 gene in NPC-TW01. In infected NPC-TW01 tumor cells, their expression of mRNA and protein levels were significantly decreased. This in turn resulted in a significant reduction in cell proliferation, apoptosis, migration and invasion. In vivo, in NOD-SCID mice bearing the NPC xenografts, the tumor weight and volume of the group of mice bearing lentivirus infected NPC-TW01 tumor cells were significantly decreased compared with the group of shLuc control. This study might suggest that FZD1 plays oncogenic role in NPC pathogenesis, including enhancing proliferation, migration and invasion. These novel findings might have potential implication in further molecule targeted therapy for NPC.
In previous published studies, they found the interaction between SOX family and WNT signaling pathway. And in our previous study, we found that the expression of SOX5 is significantly higher in NPC than in NNM. The relationship between SOX5 and FZD1 has not be defined yet. Moreover, we investigated the relationship between SOX5 and FZD1. In the current result, there exists an interactional relationship between SOX5 and FZD1.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:26:11Z (GMT). No. of bitstreams: 1
ntu-105-R03444004-1.pdf: 3063380 bytes, checksum: 1693e87b1187086215ea6be1f625bf43 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents目錄 Table of Contents
口試委員審定書 ......................................................................................... i
致謝 ........................................................................................................... ii
中文摘要 .................................................................................................. iii
Abstract .................................................................................................... v
List of Figures .......................................................................................... ix
List of Tables ............................................................................................ xi
Introduction .............................................................................................. 1
1. Nasopharyngeal carcinoma (NPC) ............................................................ 1
2. Etiology of NPC .......................................................................................... 3
3. Frizzled class receptor 1, FZD1 ................................................................. 5
4. FZD1 and SOX family ................................................................................ 7
Materials and Methods .......................................................................... 10
1. Cell lines..................................................................................................... 10
2. Extraction of RNA and preparation of cDNA ........................................ 10
3. Quantitative RT-PCR (qRT-PCR)........................................................... 12
4. Statistical analysis of qRT-PCR results................................................... 12
5. Immunohistochemical staining. ............................................................... 13
6. Western blot .............................................................................................. 14
7. Amplification and Extraction of plasmid ............................................... 15
8. Mini-plasmid purification ........................................................................ 15
9. MTT Assay ................................................................................................ 16
10. Migration assay ......................................................................................... 17
11. Invasion assay ........................................................................................... 17
12. Colony forming assay ............................................................................... 18
13. Caspase 3 activity assay ........................................................................... 18
14. In vivo assay of xenograft growth ........................................................... 18
15. Statistical analysis ..................................................................................... 19
Results ..................................................................................................... 20
FZD1 gene expression in NNM and NPC tumor cell lines ................................ 20
FZD1 protein expression in NPC biopsy specimens .......................................... 20
Functional analysis of FZD1 gene expression .................................................... 21
(1) Establishment of the stable shFZD1 infected NPC cells ....................... 21
(2) FZD1 can enhance the proliferation rate of NPC cells ......................... 21
(3) FZD1 can enhance the migration ability of NPC cells in vitro ............. 22
(4) FZD1 can enhance the invasion activity of NPC cells in vitro .............. 22
(5) FZD1 can enhance the survival activity of NPC cells in vitro .............. 22
(6) The effection of FZD1 in NPC cells is through Wnt/β-catenin signaling pathway...................................................................................................... 23
FZD1 can evading apoptosis in NPC cells .......................................................... 23
Functional assay of shFZD1 infected NPC cells after treatment with Wnt3a..23
Functional analysis of FZD1 in SCID mice bearing NPC xenografts .............. 24
The relationship between FZD1 and SOX5 in NPC cells in vitro .................... 25
Discussion ............................................................................................... 26
Figures .................................................................................................... 31
Tables ...................................................................................................... 53
List of abbreviation ................................................................................ 56
References ............................................................................................... 57
dc.language.isoen
dc.subjectFZD1之體內外功能分析zh_TW
dc.subject鼻咽癌zh_TW
dc.subjectFZD1zh_TW
dc.subjectSOX5zh_TW
dc.subjectEBVzh_TW
dc.subjectFZD1 shRNA-lentivirazh_TW
dc.subjectFunction analysis of FZD1 in vitro and in vivoen
dc.subjectSRY (sex-determining region Y)-box 5 (SOX-5)en
dc.subjectNasopharyngeal Carcinoma (NPC)en
dc.subjectEBVen
dc.subjectFrizzled-1 (FZD1)en
dc.subjectFZD1 shRNA-lentiviralen
dc.titleFZD1基因在鼻咽癌之功能分析zh_TW
dc.titleFunctional Analysis of FZD1 Gene in Nasopharyngeal Carcinomaen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳漢忠(Han-Chung Wu),黃祥博(Hsiang-Po Huang),余明俊(Ming-Jiun Yu)
dc.subject.keyword鼻咽癌,FZD1,SOX5,EBV,FZD1 shRNA-lentivira,FZD1之體內外功能分析,zh_TW
dc.subject.keywordNasopharyngeal Carcinoma (NPC),EBV,Frizzled-1 (FZD1),FZD1 shRNA-lentiviral,Function analysis of FZD1 in vitro and in vivo,SRY (sex-determining region Y)-box 5 (SOX-5),en
dc.relation.page61
dc.identifier.doi10.6342/NTU201602275
dc.rights.note有償授權
dc.date.accepted2016-08-10
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept病理學研究所zh_TW
顯示於系所單位:病理學科所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
2.99 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved