Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4991
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王金龍
dc.contributor.authorShih-Kai Chiuen
dc.contributor.author邱詩凱zh_TW
dc.date.accessioned2021-05-15T17:50:48Z-
dc.date.available2014-08-25
dc.date.available2021-05-15T17:50:48Z-
dc.date.copyright2014-08-25
dc.date.issued2014
dc.date.submitted2014-08-19
dc.identifier.citation[EH89] Klaus Ecker and Gerhard Huisken. Mean curvature evolution of entire graphs. Annals of Mathematics, pages 453–471, 1989.
[Hit97] Nigel Hitchin. The moduli space of special lagrangian submanifolds. arXiv preprint dg-ga/9711002, 1997.
[HL82] Reese Harvey and H Blaine Lawson. Calibrated geometries. Acta Mathematica, 148(1):47–157, 1982.
[Joy03] Dominic Joyce. Riemannian holonomy groups and calibrated geometry. Springer, 2003.
[Mar02] Stephen P Marshall. Deformations of special Lagrangian submanifolds. PhD thesis, University of Oxford, 2002.
[McL96] Robert C McLean. Deformations of calibrated submanifolds. In Commun. Analy. Geom. Citeseer, 1996.
[PW91] Giorgio Patrizio and Pit-Mann Wong. Stein manifolds with compact symmetric center. Mathematische Annalen, 289(1):355–382, 1991.
[Sei97] Paul Seidel. Floer homology and the symplectic isotopy problem. PhD thesis, University of Oxford, 1997.
[Smo96] Knut Smoczyk. A canonical way to deform a lagrangian submanifold. arXiv preprint dg-ga/9605005, 1996.
[Ste93] Matthew B Stenzel. Ricci-flat metrics on the complexification of a compact rank one symmetric space. Manuscripta Mathematica, 80(1):151–163, 1993.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4991-
dc.description.abstract在 Seidel 的博士論文 [Sei97] 中,他與他的指導教授 Donaldson 證明,若一緊緻凱勒流形 (compact Kahler manifold) 擁有一個尋常退化 (ordinary degeneration),則此凱勒流形內存在拉格朗日球面 (Lagrangian sphere)。這個結果引發以下的延伸問題:如果此凱勒流形為一卡拉比 -丘流形 (Calabi-Yau manifold),我們是否能夠在其中找出一個特殊拉格朗日球面 (special Lagrangian sphere)?透過文獻回顧,我們將探討特殊拉格朗日子流形 (special Lagrangian submanifolds) 的基本知識,以及球面的切叢 (the cotangent bundle of sphere) 上的瑞奇平坦度量 (Ricci-flat metrics)。在論文的最後,我們透過均曲率流 (mean curvature flow) 來探討一維的情形。zh_TW
dc.description.abstractIn his PhD thesis[Sei97], Paul Seidel and his advisor Simon K. Donaldson gave two proofs showing that a vanishing cycle in a Kahler manifold admitting an ordinary degener- ation can be chosen to be Lagrangian. This gives rise to the question whether the vanishing cycle is special Lagrangian if the manifold is Calabi-Yau. We investigate this problem by reviewing the geometric aspect of special Lagrangian manifolds and the Ricci-flat met- rics on the noncompact local model, namely the cotangent bundle of sphere. Finally, we approach this problem in dimension one through mean curvature flow.en
dc.description.provenanceMade available in DSpace on 2021-05-15T17:50:48Z (GMT). No. of bitstreams: 1
ntu-103-R01221031-1.pdf: 449213 bytes, checksum: 63093e4e479abf5dfd2b3c99563ed335 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontentsContents
口試委員會審定書 i
謝辭 ii
中文摘要 iii
Abstract iv
1 Introduction 1
2 Special Lagrangian Geometry 2
2.1 Definitions and Basic Results........................ 2
2.2 McLean’s Theorem............................. 3
2.3 Geometric Structures on the Local Moduli Spaces . . . . . . . . . . . . . 9
3 Ricci-flat metrics on T^∗ S^n 15
3.1 Existence of the Metric........................... 15
3.2 Completeness of the Stenzel Metric .................... 19
3.3 Special Lagrangian Structures ....................... 21
4 Existence of Lagrangian Spheres 23
4.1 Seidel’s Proof................................ 24
4.2 Donaldson’s Proof ............................. 27
5 Discussion on the Main Problem 29
5.1 Formulation of the Main Problem ..................... 29
5.2 Results in n=1............................... 30
dc.language.isoen
dc.subject特殊拉格朗日子流形zh_TW
dc.subject瑞奇平坦度量zh_TW
dc.subjectspecial Lagrangian submanifoldsen
dc.subjectRicci-flat metricsen
dc.title特殊拉格朗日球面存在性問題之探討zh_TW
dc.titleOn the Existence Problem of Special Lagrangian Spheresen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張樹城,蔡忠潤
dc.subject.keyword特殊拉格朗日子流形,瑞奇平坦度量,zh_TW
dc.subject.keywordspecial Lagrangian submanifolds,Ricci-flat metrics,en
dc.relation.page36
dc.rights.note同意授權(全球公開)
dc.date.accepted2014-08-19
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf438.68 kBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved