請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49885完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周綠蘋 | |
| dc.contributor.author | Ya-Han Yu | en |
| dc.contributor.author | 游雅涵 | zh_TW |
| dc.date.accessioned | 2021-06-15T11:54:49Z | - |
| dc.date.available | 2019-08-26 | |
| dc.date.copyright | 2016-08-26 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-11 | |
| dc.identifier.citation | 1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA: a cancer journal for clinicians. 2015;65(1):5-29.
2. Verma M. Pancreatic cancer epidemiology. Technology in cancer research & treatment. 2005;4(3):295-301. 3. Takhar AS, Palaniappan P, Dhingsa R, Lobo DN. Recent developments in diagnosis of pancreatic cancer. BMJ : British Medical Journal. 2004;329(7467):668-73. 4. Li D, Xie K, Wolff R, Abbruzzese JL. Pancreatic cancer. The Lancet.363(9414):1049-57. 5. Everhart J, Wright D. Diabetes mellitus as a risk factor for pancreatic cancer. A meta-analysis. Jama. 1995;273(20):1605-9. 6. Liao KF, Lai SW, Li CI, Chen WC. Diabetes mellitus correlates with increased risk of pancreatic cancer: a population-based cohort study in Taiwan. Journal of gastroenterology and hepatology. 2012;27(4):709-13. 7. Iodice S, Gandini S, Maisonneuve P, Lowenfels AB. Tobacco and the risk of pancreatic cancer: a review and meta-analysis. Langenbeck's archives of surgery / Deutsche Gesellschaft fur Chirurgie. 2008;393(4):535-45. 8. Bansal P, Sonnenberg A. Pancreatitis is a risk factor for pancreatic cancer. Gastroenterology. 1995;109(1):247-51. 9. Yasue M, Sakamoto J, Teramukai S, Morimoto T, Yasui K, Kuno N, et al. Prognostic values of preoperative and postoperative CEA and CA19.9 levels in pancreatic cancer. Pancreas. 1994;9(6):735-40. 10. Wang F, Herrington M, Larsson J, Permert J. The relationship between diabetes and pancreatic cancer. Molecular Cancer. 2003;2:4-. 11. Huxley R, Ansary-Moghaddam A, Berrington de Gonzalez A, Barzi F, Woodward M. Type-II diabetes and pancreatic cancer: a meta-analysis of 36 studies. British journal of cancer. 2005;92(11):2076-83. 12. Liao WC, Tu YK, Wu MS, Lin JT, Wang HP, Chien KL. Blood glucose concentration and risk of pancreatic cancer: systematic review and dose-response meta-analysis. BMJ (Clinical research ed). 2015;349:g7371. 13. Gullo L, Pezzilli R, Morselli-Labate AM. Diabetes and the risk of pancreatic cancer. The New England journal of medicine. 1994;331(2):81-4. 14. Pannala R, Leirness JB, Bamlet WR, Basu A, Petersen GM, Chari ST. Prevalence and clinical profile of pancreatic cancer-associated diabetes mellitus. Gastroenterology. 2008;134(4):981-7. 15. Permert J, Ihse I, Jorfeldt L, von Schenck H, Arnquist HJ, Larsson J. Improved glucose metabolism after subtotal pancreatectomy for pancreatic cancer. The British journal of surgery. 1993;80(8):1047-50. 16. Basso D, Millino C, Greco E, Romualdi C, Fogar P, Valerio A, et al. Altered glucose metabolism and proteolysis in pancreatic cancer cell conditioned myoblasts: searching for a gene expression pattern with a microarray analysis of 5000 skeletal muscle genes. Gut. 2004;53(8):1159-66. 17. Valerio A, Basso D, Brigato L, Ceolotto G, Baldo G, Tiengo A, et al. Glucose Metabolic Alterations in Isolated and Perfused Rat Hepatocytes Induced by Pancreatic Cancer Conditioned Medium: A Low Molecular Weight Factor Possibly Involved. Biochemical and Biophysical Research Communications. 1999;257(2):622-8. 18. Basso D, Valerio A, Seraglia R, Mazza S, Piva MG, Greco E, et al. Putative pancreatic cancer-associated diabetogenic factor: 2030 MW peptide. Pancreas. 2002;24(1):8-14. 19. Wang F, Larsson J, Adrian TE, Gasslander T, Permert J. In vitro influences between pancreatic adenocarcinoma cells and pancreatic islets. The Journal of surgical research. 1998;79(1):13-9. 20. Wang F, Adrian TE, Westermark G, Gasslander T, Permert J. Dissociated insulin and islet amyloid polypeptide secretion from isolated rat pancreatic islets cocultured with human pancreatic adenocarcinoma cells. Pancreas. 1999;18(4):403-9. 21. Wang F, Larsson J, Abdiu A, Gasslander T, Westermark P, Adrian TE, et al. Dissociated secretion of islet amyloid polypeptide and insulin in serum-free culture media conditioned by human pancreatic adenocarcinoma cell lines. International journal of pancreatology : official journal of the International Association of Pancreatology. 1997;21(2):157-64. 22. Sah RP, Nagpal SJ, Mukhopadhyay D, Chari ST. New insights into pancreatic cancer-induced paraneoplastic diabetes. Nature reviews Gastroenterology & hepatology. 2013;10(7):423-33. 23. Hart PA, Kamada P, Rabe KG, Srinivasan S, Basu A, Aggarwal G, et al. Weight loss precedes cancer-specific symptoms in pancreatic cancer-associated diabetes mellitus. Pancreas. 2011;40(5):768-72. 24. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clinical pharmacology and therapeutics. 2001;69(3):89-95. 25. Ludwig JA, Weinstein JN. Biomarkers in cancer staging, prognosis and treatment selection. Nat Rev Cancer. 2005;5(11):845-56. 26. Ballehaninna UK, Chamberlain RS. The clinical utility of serum CA 19-9 in the diagnosis, prognosis and management of pancreatic adenocarcinoma: An evidence based appraisal. Journal of gastrointestinal oncology. 2012;3(2):105-19. 27. Goonetilleke KS, Siriwardena AK. Systematic review of carbohydrate antigen (CA 19-9) as a biochemical marker in the diagnosis of pancreatic cancer. European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology. 2007;33(3):266-70. 28. Hernandez JM, Cowgill SM, Al-Saadi S, Collins A, Ross SB, Cooper J, et al. CA 19-9 velocity predicts disease-free survival and overall survival after pancreatectomy of curative intent. Journal of gastrointestinal surgery : official journal of the Society for Surgery of the Alimentary Tract. 2009;13(2):349-53. 29. Yamada K, Saito M, Matsuoka H, Inagaki N. A real-time method of imaging glucose uptake in single, living mammalian cells. Nat Protocols. 2007;2(3):753-62. 30. Basso D, Greco E, Padoan A, Fogar P, Scorzeto M, Fadi E, et al. Altered intracellular calcium fluxes in pancreatic cancer induced diabetes mellitus: Relevance of the S100A8 N-terminal peptide (NT-S100A8). Journal of cellular physiology. 2011;226(2):456-68. 31. Bresnick AR, Weber DJ, Zimmer DB. S100 proteins in cancer. Nat Rev Cancer. 2015;15(2):96-109. 32. Markowitz J, Carson WE, 3rd. Review of S100A9 biology and its role in cancer. Biochimica et biophysica acta. 2013;1835(1):100-9. 33. Ortega FJ, Sabater M, Moreno-Navarrete JM, Pueyo N, Botas P, Delgado E, et al. Serum and urinary concentrations of calprotectin as markers of insulin resistance and type 2 diabetes. European journal of endocrinology / European Federation of Endocrine Societies. 2012;167(4):569-78. 34. Ortega FJ, Mercader JM, Moreno-Navarrete JM, Sabater M, Pueyo N, Valdes S, et al. Targeting the association of calgranulin B (S100A9) with insulin resistance and type 2 diabetes. Journal of molecular medicine (Berlin, Germany). 2013;91(4):523-34. 35. Fernandez-Real JM, Pickup JC. Innate immunity, insulin resistance and type 2 diabetes. Trends in endocrinology and metabolism: TEM. 2008;19(1):10-6. 36. Duncan BB, Schmidt MI. The epidemiology of low-grade chronic systemic inflammation and type 2 diabetes. Diabetes technology & therapeutics. 2006;8(1):7-17. 37. Gebhardt C, Nemeth J, Angel P, Hess J. S100A8 and S100A9 in inflammation and cancer. Biochemical pharmacology. 2006;72(11):1622-31. 38. Fang WY, Chen YW, Hsiao JR, Liu CS, Kuo YZ, Wang YC, et al. Elevated S100A9 expression in tumor stroma functions as an early recurrence marker for early-stage oral cancer patients through increased tumor cell invasion, angiogenesis, macrophage recruitment and interleukin-6 production. Oncotarget. 2015;6(29):28401-24. 39. Nemeth J, Stein I, Haag D, Riehl A, Longerich T, Horwitz E, et al. S100A8 and S100A9 are novel nuclear factor kappa B target genes during malignant progression of murine and human liver carcinogenesis. Hepatology (Baltimore, Md). 2009;50(4):1251-62. 40. Tsai S-Y, Segovia JA, Chang T-H, Morris IR, Berton MT, Tessier PA, et al. DAMP Molecule S100A9 Acts as a Molecular Pattern to Enhance Inflammation during Influenza A Virus Infection: Role of DDX21-TRIF-TLR4-MyD88 Pathway. PLoS Pathogens. 2014;10(1):e1003848. 41. Ryckman C, Vandal K, Rouleau P, Talbot M, Tessier PA. Proinflammatory activities of S100: proteins S100A8, S100A9, and S100A8/A9 induce neutrophil chemotaxis and adhesion. Journal of immunology (Baltimore, Md : 1950). 2003;170(6):3233-42. 42. Eue I, Pietz B, Storck J, Klempt M, Sorg C. Transendothelial migration of 27E10+ human monocytes. International immunology. 2000;12(11):1593-604. 43. Nishida A, Andoh A, Inatomi O, Fujiyama Y. Interleukin-32 expression in the pancreas. The Journal of biological chemistry. 2009;284(26):17868-76. 44. Sun XJ, Crimmins DL, Myers MG, Jr., Miralpeix M, White MF. Pleiotropic insulin signals are engaged by multisite phosphorylation of IRS-1. Molecular and cellular biology. 1993;13(12):7418-28. 45. DeFronzo RA, Gunnarsson R, Björkman O, Olsson M, Wahren J. Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent (type II) diabetes mellitus. Journal of Clinical Investigation. 1985;76(1):149-55. 46. Goldstein BJ, Ahmad F, Ding W, Li PM, Zhang WR. Regulation of the insulin signalling pathway by cellular protein-tyrosine phosphatases. Molecular and cellular biochemistry. 1998;182(1-2):91-9. 47. Aguirre V, Werner ED, Giraud J, Lee YH, Shoelson SE, White MF. Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. The Journal of biological chemistry. 2002;277(2):1531-7. 48. Boucher J, Kleinridders A, Kahn CR. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harbor perspectives in biology. 2014;6(1). 49. Copps KD, Hancer NJ, Opare-Ado L, Qiu W, Walsh C, White MF. Irs1 serine 307 promotes insulin sensitivity in mice. Cell metabolism. 2010;11(1):84-92. 50. Ichikawa M, Williams R, Wang L, Vogl T, Srikrishna G. S100A8/A9 activate key genes and pathways in colon tumor progression. Molecular cancer research : MCR. 2011;9(2):133-48. 51. Ghavami S, Rashedi I, Dattilo BM, Eshraghi M, Chazin WJ, Hashemi M, et al. S100A8/A9 at low concentration promotes tumor cell growth via RAGE ligation and MAP kinase-dependent pathway. Journal of leukocyte biology. 2008;83(6):1484-92. 52. Hermani A, De Servi B, Medunjanin S, Tessier PA, Mayer D. S100A8 and S100A9 activate MAP kinase and NF-kappaB signaling pathways and trigger translocation of RAGE in human prostate cancer cells. Experimental cell research. 2006;312(2):184-97. 53. Vogl T, Tenbrock K, Ludwig S, Leukert N, Ehrhardt C, van Zoelen MA, et al. Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nature medicine. 2007;13(9):1042-9. 54. Kim JJ, Sears DD. TLR4 and Insulin Resistance. Gastroenterology Research and Practice. 2010;2010:11. 55. Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS. TLR4 links innate immunity and fatty acid–induced insulin resistance. Journal of Clinical Investigation. 2006;116(11):3015-25. 56. Brand RE, Nolen BM, Zeh HJ, Allen PJ, Eloubeidi MA, Goldberg M, et al. Serum biomarker panels for the detection of pancreatic cancer. Clinical cancer research : an official journal of the American Association for Cancer Research. 2011;17(4):805-16. 57. Park HD, Kang ES, Kim JW, Lee KT, Lee KH, Park YS, et al. Serum CA19-9, cathepsin D, and matrix metalloproteinase-7 as a diagnostic panel for pancreatic ductal adenocarcinoma. Proteomics. 2012;12(23-24):3590-7. 58. Fayed ST, Ahmad SM, Kassim SK, Khalifa A. The Value of CA 125 and CA72-4 in Management of Patients with Epithelial Ovarian Cancer. Disease Markers. 1998;14(3):155-60. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49885 | - |
| dc.description.abstract | 胰臟癌是目前全球癌症致死率排名中的第四位,且其五年內的存活率只有
5%。由於其症狀不明顯,導致有85% 的病人在被診斷時都已位於末期的階段。因此找尋能夠早期偵測出胰臟癌的方法是必要的。臨床上有高達40% 的病人在確診前兩年內會發生新生糖尿病,目前認為,新生糖尿病能提供早期診斷胰臟癌的潛力指標。而新生糖尿病是由於胰臟癌分泌的致糖尿病因子所導致。因此,在本篇研究中我們想找尋在新生糖尿病中的致糖尿病因子,作為區分新生糖尿病與第二型糖尿病的指標,達到早期偵測胰臟癌的目的。 在實驗室先前的研究中,我們收集了胰臟癌細胞株的分泌性蛋白,並透過蛋白質體學及生物資訊分析結果,以及後續的驗證,鑑定出IL-32、TIMP-1、galectin-3及S100A9作為致糖尿病因子的候選蛋白。 在本篇中,我們收集臨床上四組病人的組織及血清檢體,分別為糖尿病、新生糖尿病、胰臟癌及健康人組別。我們發現galectin-3在新生糖尿病病人的組織中表現量會上升,S100A9在胰臟癌及新生糖尿病病人組織中會同時表現在癌細胞及癌症基質細胞中,而IL-32及TIMP-1則是在胰臟癌及新生糖尿病病人組織中表現量無顯著差異。另外,galectin-3及S100A9在有糖尿病的病人血清中含量都會上升,而IL-32在四個族群中無顯著差異。上述實驗顯示galectin-3及S100A9可能為糖尿病的指標。因此我們選定galectin-3及S100A9,繼續探討其對於細胞代謝功能上的影響。在先前實驗室的實驗結果中,已證明galectin-3會抑制肌肉細胞攝 取葡萄糖能力及降低胰臟β細胞胰島素的釋放量。 在本篇中,我們發現S100A9也能夠有效抑制肌肉細胞攝取葡萄糖的能力,並且降低β細胞胰島素的釋放量,說明S100A9能夠造成細胞胰島素阻抗的發生。接著我們去探討S100A9造成胰島素阻抗的機制,由結果顯示,S100A9會透過抑制IRS-1的活性,降低AKT的磷酸化,造成細胞胰島素訊息傳遞路徑受到阻擾。上述的實驗中,我們確認galectin-3及S100A9為胰臟癌中的致糖尿病因子,在後續的實驗中,我們將深入探討其在胰臟癌中導致糖尿病的機制。並且若能再搭配其他胰臟癌的生物標記,組合成複合型生物標記,便能提供早期偵測胰臟癌的指標。 | zh_TW |
| dc.description.abstract | Pancreatic cancer (PC) is the fourth leading cause of cancer-related deaths in the world with an overall-5-year survival rate less than 5%. Due to the lack of effective detection methods, 85% of patients are diagnosed at advanced stage. Therefore, the discovery of biomarkers for early detection is necessary. There are approximately 40% of PC patients followed with PC-associated new-onset diabetes (PCDM), occurring 2 years before PC is diagnosed. These provide a potential clue to detect PC in early stage. PCDM is mediated by some unknown tumor-secreted diabetogenic factors. Identifying the diabetogenic factors in PCDM may help us understand its pathogenesis and discover novel biomarkers to distinguish PCDM from Type 2 diabetes (T2DM).
In our previous studies, we identified IL-32, TIMP-1, galectin-3 and S100A9 as candidates in condition media (CM) of two pancreatic cancer cell lines (MiaPaCa-2 and PANC-1), and further investigated their feature in PC. First, we collected different groups of patients’ samples, including diabetes (DM), PCDM, PC and normal control. We found that galectin-3 expressed higher level in cancer cells of PCDM, S100A9 expressed both in cancer cells and tumor stroma cells of PCDM and PC, while IL-32 and TIMP-1 showed no differences between PCDM and PC. Additionally, galectin-3 and S100A9 expressed higher level in serum of PCDM, while IL-32 showed no difference between each groups. Through clinical evidences, we selected galectin-3 and S100A9 as candidates of diabetogenic factors, and further detected their effects on cell functions. In our study, we found that S100A9 impaired glucose uptake ability of C2C12 cells and decreased the insulin secretion level in ß cells. Moreover, we investigated the mechanism of S100A9 leading to inferior glucose uptake of C2C12 cells. We verified that S100A9 inhibits insulin signaling pathway through reduced IRS-1 activity and AKT phosphorylation, resulted in insulin resistance in C2C12 cells. By characterizing these proteins, we discovered galectin-3 and S100A9 as potential biomarkers of PCDM. In the future, in order to distinguish PCDM from T2DM, it is necessary to combine other potential biomarkers of PC into a multiple panel. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T11:54:49Z (GMT). No. of bitstreams: 1 ntu-105-R03442025-1.pdf: 5326775 bytes, checksum: 7ba67bbb7fc593eecb0c9cd14be0217d (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 口委審定書 I
謝誌 II 中文摘要 III Abstract V 縮寫 VII 目錄 IX 圖目錄 XII 附錄目錄 XIII 第一章 導論 1 第一節 胰臟癌之概論 1 1.1 胰臟癌之流行病學 1 1.2 胰臟癌之特徵 1 1.3 胰臟癌之危險因子 1 1.4 胰臟癌之診斷與治療 2 1.5 胰臟癌與糖尿病之關係 2 第二節 新生糖尿病之概論 3 2.1 新生糖尿病之定義 3 2.2 新生糖尿病之機制 3 2.3 新生糖尿病之潛力 4 第三節 生物標記 4 3.1 生物標記之定義 4 3.2 腫瘤生物標記 4 3.3 胰臟癌之生物標記 5 第四節 研究動機 5 第二章 實驗材料 7 第一節 細胞株 7 第二節 血清樣本 7 第三節 抗體 7 第四節 重組蛋白 8 第五節 藥品 8 第七節 酵素 10 第八節 儀器 11 第三章 實驗方法 12 第一節 細胞培養 (Cell culture) 12 1.1 老鼠肌肉細胞 (C2C12 myoblast cell) 12 1.2 老鼠胰臟beta細胞 (RIN-m5F beta cell) 12 1.3 細胞計數及細胞存活率(Cell counting and cell viability) 12 第二節 候選蛋白的製備 (Candidate protein preparation) 13 2.1 候選蛋白之質體建構 (Construct of candidate protein) 13 2.2 候選蛋白之表現 (Expression of candidate protein) 13 2.3 候選蛋白之純化 (Purification of candidate protein) 14 2.4 候選蛋白之蛋白質膠體內酶解 (In gel digestion) 14 第三節 蛋白之分析 (Protein Analysis) 16 3.1 蛋白濃度之測定 (BCA protein assay) 16 3.2 十二烷基硫酸鈉聚丙烯醯胺膠體電泳 (SDS-PAGE) 16 3.3 膠體之染色 (Protein staining) 18 3.4 蛋白質之轉印 (Protein transferring) 19 3.5 蛋白質轉印膜之染色 20 3.6 西方墨點法 (Western Blot) 20 第四節 候選蛋白對細胞功能探討 21 4.1 肌肉細胞葡萄萄攝取量之測定 (2-NBDG uptake assay) 21 4.2 胰臟beta細胞胰島素釋放之測定 (Insulin secretion assay) 21 第五節 臨床檢體之分析 22 5.1 酵素免疫分析法 (Enzyme-linked immunosorbent assay, ELISA) 22 5.2 免疫組織化學染色法 (Immunohistochemistry, IHC) 23 第四章 實驗結果 25 第一節 胰臟癌中致糖尿病因子之挑選 25 第二節 臨床檢體之驗證 25 2.1 候選蛋白在臨床組織切片的表現及分析 25 2.2 候選蛋白在臨床病人血清的表現及分析 26 第三節 候選蛋白對細胞胰島素敏感性之影響 27 3.1 候選蛋白galectin-3造成細胞胰島素之阻抗發生 27 3.2 候選蛋白IL-32及TIMP-1對肌肉細胞攝取葡萄糖能力之影響 27 3.3 候選蛋白S100A9對肌肉細胞攝取葡萄糖能力之影響 27 3.4 候選蛋白S100A9對於胰臟ß細胞胰島素釋放之影響 28 第四節 候選蛋白調控之訊息傳遞路徑 28 4.1 候選蛋白S100A9造成胰島素阻抗之訊息傳遞路徑 28 第五章 討論 30 第一節 S100 calcium binding protein A9 (S100A9) 蛋白之功能與調控 30 1.1 S100 protein family 之種類與功能 30 1.2 S100A9 之正常生理功能 30 1.3 S100A9 與糖尿病之關聯性 30 1.4 S100A9 於胰臟癌之調控 31 第二節 糖尿病中致糖尿病因子之調控 32 第三節 IL-32於胰臟癌之調控 33 4.1 胰島素受體 (Insulin receptor, IR) 訊息傳遞路徑 33 4.2 胰島素受體 (Insulin receptor, IR) 訊息傳遞之負調控者 33 4.3 S100A9 造成胰島素阻抗之機制 35 第五節 胰臟癌之潛力生物標記蛋白 35 第六節 複合性生物標記 (Multiple biomarkers) 之應用 36 第六章 參考文獻 37 圖 42 附錄 52 | |
| dc.language.iso | zh-TW | |
| dc.subject | S100A9 | zh_TW |
| dc.subject | 胰臟癌 | zh_TW |
| dc.subject | 新生糖尿病 | zh_TW |
| dc.subject | 胰島素抗性 | zh_TW |
| dc.subject | 生物標記 | zh_TW |
| dc.subject | S100A9 | en |
| dc.subject | new-onset diabetes | en |
| dc.subject | insulin resistance | en |
| dc.subject | Pancreatic cancer | en |
| dc.subject | biomarker | en |
| dc.title | 胰臟癌誘發新生糖尿病之潛力致糖尿病因子之角色探討 | zh_TW |
| dc.title | Characterization of Potential Diabetogenic Factors in Pancreatic Cancer-associated New-Onset Diabetes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳明賢,廖偉智 | |
| dc.subject.keyword | 胰臟癌,新生糖尿病,胰島素抗性,生物標記,S100A9, | zh_TW |
| dc.subject.keyword | Pancreatic cancer,new-onset diabetes,insulin resistance,biomarker,S100A9, | en |
| dc.relation.page | 55 | |
| dc.identifier.doi | 10.6342/NTU201602207 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-08-11 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 5.2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
