Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49876
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊燿州(Yao-Joe Yang)
dc.contributor.authorChia-Ming Changen
dc.contributor.author張家銘zh_TW
dc.date.accessioned2021-06-15T11:54:13Z-
dc.date.available2018-10-14
dc.date.copyright2016-10-14
dc.date.issued2016
dc.date.submitted2016-08-11
dc.identifier.citation[1] Matthew Ward MBChB FRCA, Jeremy A Langton MD FRCA ILTM “Blood pressure measurement” Oxford Journals, Medicine & Health, BJA: CEACCP Vol. 7, pp. 122-126, 2007.
[2] W. A. Littler, MD, FRCP, and B. Komsuoglu, MD. Birmingham, England “Which is the most accurate method of measuring blood pressure?” American Heart Journal, Vol. 117, pp 723-728, 1989.
[3] Kalmar, Alain. 'Evaluation of arterial tonometry in a clinical setting.'
[4] Chow, Eric Y., et al. 'Fully wireless implantable cardiovascular pressure monitor integrated with a medical stent.' IEEE Transactions on Biomedical Engineering, pp.1487-1496, 2010.
[5] Jens Fiala, Philipp Bingger, Dominic Ruh, Katharina Foerster, Claudia Heilmann, Friedhelm Beyersdorf, Hans Zappe and Andreas Seifert, 'An implantable optical blood pressure sensor based on pulse transit time.' Biomedical microdevices, pp. 73-81, 2013.
[6] Cleven NJ, Müntjes JA, Fassbender H, Urban U, Görtz M, Vogt H, Gräfe M, Göttsche T, Penzkofer T, Schmitz-Rode T and Mokwa W, 'A novel fully implantable wireless sensor system for monitoring hypertension patients.' IEEE Transactions on Biomedical Engineering, pp.3124-3130, 2012.
[7] M. Theodora, J. Fialaa, D. Ruha, K. Försterb, C. Heilmannb, F. Beyersdorfb, Y. Manolia, c, H. Zappea and A. Seiferta 'Implantable accelerometer system for the determination of blood pressure using reflected wave transit time,' Sensors and Actuators A: Physical, pp.151-158, 2014.
[8] Peter, L., Norbert Noury, and M. Cerny. 'A review of methods for non-invasive and continuous blood pressure monitoring: Pulse transit time method is promising?.' IRBM , pp.271-282, 2014.
[9] Shevchenko, Yury L., and Joshua E. Tsitlik. '90th Anniversary of the development by Nikolai S. Korotkoff of the auscultatory method of measuring blood pressure,' Circulation, pp.116-118, 1996.
[10] Pickering, T. G., et al. 'Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research. Recommendations for blood pressure measurement in humans and experimental animals: Part 1: blood pressure measurement in humans: a statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research,' Hypertension, pp.142-161, 2005.
[11] L. A. Geddes, M. Voelz, C. Combs, D. Reiner and C. F. Babbs, 'Characterization of the oscillometric method for measuring indirect blood pressure.' Annals of Biomedical Engineering, pp.271-280, 1982.
[12] Penaz, J. 'Photoelectric measurement of blood pressure, volume and flow in the finger.' Digest of the 10th international conference on medical and biological engineering, 1973.
[13] L. A. Geddes, M. Voelz, S. James and D. Reiner, 'Pulse arrival time as a method of obtaining systolic and diastolic blood pressure indirectly.' Medical and Biological Engineering and Computing, pp.671-672, 1981.
[14] Pressman, G. L., and P. M. Newgard. 'A transducer for the continuous external measurement of arterial blood pressure.' IEEE Transactions on Bio-Medical Electronics, pp.73-81, 1963.
[15] Y. Zhang, R. Howver, B. Gogoi and N. Yazdi, 'A high-sensitive ultra-thin MEMS capacitive pressure sensor.' 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference, 2011.
[16] Weili Hu, Xiaofan Niu1, Ran Zhao and Qibing Pei, 'Elastomeric transparent capacitive sensors based on an interpenetrating composite of silver nanowires and polyurethane,' Applied Physics Letters, 2013.
[17] Jaehong Lee, Hyukho Kwon, Jungmok Seo, Sera Shin, Ja Hoon Koo, Changhyun Pang, Seungbae Son, Jae Hyung Kim, Yong Hoon Jang, Dae Eun Kim, Taeyoon Lee, 'Conductive Fiber‐Based Ultrasensitive Textile Pressure Sensor for Wearable Electronics,' Advanced Materials, pp.2433-2439, 2015.
[18] Lei, Kin Fong, Kun-Fei Lee, and Ming-Yih Lee. 'A flexible PDMS capacitive tactile sensor with adjustable measurement range for plantar pressure measurement.' Microsystem technologies, pp.1351-1358, 2014.
[19] Xiaolong Wang, Tingjie Li, Jillian Adamsc and Jun Yang, 'Transparent, stretchable, carbon-nanotube-inlaid conductors enabled by standard replication technology for capacitive pressure, strain and touch sensors,' Journal of Materials Chemistry A, pp. 3580-3586, 2013.
[20] Shu Gong, Willem Schwalb, Yongwei Wang, Yi Chen, Yue Tang, Jye Si, Bijan Shirinzadeh and Wenlong Cheng, 'A wearable and highly sensitive pressure sensor with ultrathin gold nanowires,' Nature communications, 2014.
[21] Jung, Sungmook, et al. 'Reverse‐Micelle‐Induced Porous Pressure‐Sensitive Rubber for Wearable Human–Machine Interfaces.' Advanced Materials 26.28 (2014): 4825-4830.
[22] Daniel Janczak, Marcin Słoma, Grzegorz Wróblewski, Anna Młożniak and Małgorzata Jakubowska, 'Screen-printed resistive pressure sensors containing graphene nanoplatelets and carbon nanotubes.' Sensors, pp. 17304-17312, 2014.
[23] Muth JT, Vogt DM, Truby RL, Mengüç Y, Kolesky DB, Wood RJ, Lewis JA, 'Embedded 3D printing of strain sensors within highly stretchable elastomers.' Advanced Materials, pp. 6307-6312, 2014.
[24] Haixia Meia, Rui Wanga, Ziying wanga, Jianchao Fenga, Yan Xiaa, Tong Zhanga, 'A flexible pressure-sensitive array based on soft substrate.'Sensors and Actuators A: Physical, pp. 80-86, 2015.
[25] Yaping Zang, Fengjiao Zhang, Chong-an Di and Daoben Zhu, 'Advances of flexible pressure sensors toward artificial intelligence and health care applications.' Materials Horizons, pp. 140-156, 2015.
[26] Benjamin C.-K. Tee, Alex Chortos, Roger R. Dunn, Gregory Schwartz, Eric Eason, Zhenan Bao, 'Tunable flexible pressure sensors using microstructured elastomer geometries for intuitive electronics,' Advanced Functional Materials, pp.5427-5434, 2014.
[27] Changhyun Pang, Gil-Yong Lee, Tae-il Kim, Sang Moon Kim, Hong Nam Kim, Sung-Hoon Ahn and Kahp-Yang Suh, 'A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibers,' Nature materials pp. 795-801, 2012.
[28] Chwee-Lin Choong, Mun-Bo Shim, Byoung-Sun Lee, Sanghun Jeon, Dong-Su Ko, Tae-Hyung Kang, Jihyun Bae, Sung Hoon Lee, Kyung-Eun Byun, Jungkyun Im, Yong Jin Jeong, Chan Eon Park, Jong-Jin Park and U-In Chung, 'Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array,' Advanced Materials, pp. 3451-3458, 2014.
[29] He Tian, Yi Shu, Xue-Feng Wang, Mohammad Ali Mohammad, Zhi Bie, Qian-Yi Xie, Cheng Li, Wen-Tian Mi, Yi Yang and Tian-Ling Ren, 'A Graphene-Based Resistive Pressure Sensor with Record-High Sensitivity in a Wide Pressure Range,' Scientific Reports , 2015.
[30] Jonghwa Park, Youngoh Lee, Jaehyung Hong, Minjeong Ha, Young-Do Jung, Hyuneui Lim, Sung Youb Kim and Hyunhyub Ko, 'Giant Tunneling Piezoresistance of Composite Elastomers with Interlocked Microdome Arrays for Ultrasensitive and Multimodal Electronic Skins,' ACS Nano, pp.4689-4697, 2014.
[31] http://www.who.int/mediacentre/factsheets/fs317/en/
[32] William, B., and M. D. Kannel. 'Blood Pressure as a cardiovascular risk factor.' JAMA, pp. 1571-1576, 1996.
[33] Avolio, Alberto P., Mark Butlin, and Andrew Walsh. 'Arterial blood pressure measurement and pulse wave analysis—their role in enhancing cardiovascular assessment.' Physiological measurement , 2009.
[34] Yingfei Su, Yahui Zhang, Yueming Jin, Yang Yao, Ruifeng Zhang, Yongsheng Jiang and Lisheng Xu, 'The feasibility for dicrotic augmentation index to replace tidal augmentation index,' Information and Automation (ICIA), 2014 IEEE International Conference.
[35] Mattace-Raso FU, van der Cammen TJ, Hofman A, van Popele NM, Bos ML, Schalekamp MA, Asmar R, Reneman RS, Hoeks AP, Breteler MM and Witteman JC, 'Arterial stiffness and risk of coronary heart disease and stroke the rotterdam study.' Circulation, pp. 657-663, 2006.
[36] Stehouwer, C. D. A., R. M. A. Henry, and I. Ferreira. 'Arterial stiffness in diabetes and the metabolic syndrome: a pathway to cardiovascular disease.'Diabetologia, pp. 527-539, 2008.
[37] Hua Deng, Lin Lin, Mizhi Ji, Shuangmei Zhang, Mingbo Yang and Qiang Fu, 'Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials.' Progress in Polymer Science, pp. 627-655, 2014.
[38] Bauhofer, Wolfgang, and Josef Z. Kovacs. 'A review and analysis of electrical percolation in carbon nanotube polymer composites.' Composites Science and Technology, pp.1486-1498, 2009.
[39] Ruschau, G. R., S. Yoshikawa, and R. E. Newnham. 'Resistivities of conductive composites.' Journal of applied physics, pp. 953-959, 1992.
[40] Ning Hu, Yoshifumi Karube, Cheng Yan, Zen Masuda and Hisao Fukunaga, 'Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor.' Acta Materialia, pp. 2929-2936, 2008.
[41] Cheng-Wen Ma, Chia-Ming Chang, Ting-Hao Lin, Yao-Joe Joseph Yang, 'Highly sensitive tactile sensing array realized using a novel fabrication process with membrane filters.' Journal of Microelectromechanical Systems , pp.2062-2070, 2015.
[42] 祁忠勇, “FFT與訊號處理簡介,”1994.
[43] Huang, Norden E., and Zhaohua Wu, 'A review on Hilbert‐Huang transform: Method and its applications to geophysical studies.' Reviews of Geophysics, 2008.
[44] Norden, E, Huang, and Samuel, S, P, Shen “Hilbert-Huang Transform and Its Applications Second Edition” World Scientific Publishing CO. Pte. Ltd ,2005.
[45] R. J. Lang, B. Smilowitz, “A Technique for Eliminating Standing Waves and Other Interference Effects in Photoresist,” IEEE Transactions on Sonics and Ultrasonics, vol.27, 1980.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49876-
dc.description.abstract本研究開發了一高靈敏度的壓力感測器陣列,並將其應用於連續脈波之監測。本研究所提出的感測器由表面具有微結構的高分子材料所組成。感測器將被放置在橈動脈表層的皮膚,並施以一外加壓力固定。根據動脈張力測定法,所測定到的脈波訊號會和血壓值呈現正相關。而藉由陣列化感測器的使用,在量測時,至少會有1至2個感測單元能夠量測到穩定且清晰地脈波訊號,增加感測之效率與使用的便利性。
本研究所提出的壓力感測器陣列由雙層表面具有微結構的導電高分子所組成。其中,導電高分子由PDMS混合多壁奈米碳管所構成,表面的微結構則是利用尼龍濾膜作為模具,將尼龍濾膜表面的的孔隙結構轉印而成。特性量測結果顯示,此元件具有高靈敏度、重複性佳、製程簡單且具可撓性等。本研究亦成功的利用提出的元件量測到脈波訊號,而所量測到的訊號透過Fast Fourier Transform (FFT)與Hilbert Haung Transform (HHT)處理,也能成功的將訊號的漂移與高頻雜訊消除。而在未來的研究中,亦可將此脈波訊號與實際血壓值做轉換,並應用到學術與臨床醫學上使用。
zh_TW
dc.description.abstractIn this work, a highly sensitive piezoresistive tactile sensing array for continuous blood pulse wave monitoring was presented. The polymer-based sensing device was patterned with microdome structures by using nylon membrane filter substrates. The sensing array is placed and pressed on the superficial radial artery. Based on the tonometric method, blood pressure can be estimated from the measured blood pulse wave signals. By using a linear sensing array, at least 1 or 2 sensing channel can easily acquire excellent blood pulse signals without making much effort on aligning the sensing device with the artery.
The proposed sensing array consists of two conductive polymer films which are made by dispersing multi-wall carbon nanotubes (MWCNT) into PDMS matrix patterned with microdome structures by using a membrane filter substrate. Characterization of the proposed sensing elements was conducted. The proposed device features advantages such as high sensitivity, good repeatability, flexibility and simple fabrication process. Experimental results show that continuous blood pulse wave signal can be tracked by the proposed sensing array. The drift and the high frequency noise can be successfully eliminate by applying Fast Fourier Transform (FFT) and Hilbert Haung Transform (HHT).The measured blood pulse wave signal can potentially transformed into real blood pressure value in the future.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:54:13Z (GMT). No. of bitstreams: 1
ntu-105-R03522712-1.pdf: 5294954 bytes, checksum: bb509a689272df0c5af720cec685d2f5 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents致謝 i
摘要 iii
Abstract iv
目錄 v
圖目錄 ix
表目錄 xiv
符號說明 xv
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1 侵入式血壓量測 2
1.2.2 非侵入式血壓量測 6
1.2.2.1 聽診法(Auscultatory method) 7
1.2.2.2 振盪法(Oscillometric method) 8
1.2.2.3 恆定容積法(Volume clamp method) 9
1.2.2.4 脈搏波速測定法(Pulse wave velocity method, PWV) 11
1.2.2.5 脈搏傳遞時間法(Pulse transit time method, PTT) 12
1.2.2.6 動脈張力測定法(Tonometry method) 13
1.2.3 壓力感測器 14
1.2.3.1 電容式壓力感測器 15
1.2.3.2 壓阻式壓力感測器 21
1.2.4 具有微結構之壓力感測器 26
1.3 研究動機與目的 32
1.4 論文架構 34
第二章 理論基礎 35
2.1 動脈張力法(Tonometry method)原理 35
2.2 脈波波型分析 40
2.2.1 脈波之特徵點與其生理意義[34] 40
2.2.2 相關生理參數 42
2.3 導電高分子 43
2.3.1 導電粒子 43
2.3.2 高分子基材 44
2.3.3 導電高分子的導電機制 44
2.4 脈搏訊號處理 48
2.4.1 快速傅立葉轉換 49
2.4.2 希爾伯特-黃轉換(Hilbert-Huang Transform, HHT) 51
第三章 元件設計與元件製程 56
3.1 元件設計 56
3.2 工作原理 56
3.3 製作流程 58
3.4 導電高分子之製備 59
3.5 模具製作 62
3.5.1 光罩設計 63
3.5.2 微影製程 64
3.6 圖形化導電高分子製作 69
3.7 元件組裝與封裝 71
3.8 元件製程結果 72
3.8.1 SU-光阻框架與圖形化導電高分子 72
3.8.2 電子顯微鏡(SEM)圖 73
3.8.3 實體元件圖 74
第四章 量測結果與討論 75
4.1 電阻變化率量測 75
4.1.1 量測平台架設 75
4.1.2 量測結果與討論 76
4.2 元件動態響應量測 78
4.2.1 量測平台架設 78
4.2.2 量測結果與討論 79
4.3 元件重複性(repeatability)與耐久性(durability)量測 80
4.4 元件均勻性(Uniformity)量測 81
4.5 元件干擾(crosstalk)現象量測 82
4.6 脈波訊號量測 83
4.6.1 脈波量測設備架設 83
4.7 脈波量測結果與訊號處理 86
4.7.1 量測結果 86
4.7.2 60秒量測資料分析 88
第五章 結論與未來展望 94
5.1 結論 94
5.2 未來展望 95
參考文獻 97
附錄A 103
dc.language.isozh-TW
dc.subject連續脈波偵測zh_TW
dc.subject聚二甲基矽氧烷(PDMS)zh_TW
dc.subject觸覺感測器zh_TW
dc.subject尼龍濾膜zh_TW
dc.subject動脈張力測定zh_TW
dc.subject導電高分子zh_TW
dc.subject奈米碳管zh_TW
dc.subjectcontinuous blood pluse wave measurementen
dc.subjectCarbon nanotubesen
dc.subjectconductive polymeren
dc.subjectnylon membrane filteren
dc.subjecttactile sensoren
dc.subjectpolydimethylsiloxane (PDMS)en
dc.subjecttonometric methoden
dc.title應用於連續脈搏波量測之高靈敏度觸覺感測器陣列開發zh_TW
dc.titleHighly Sensitive Tunneling Piezoresistive Tactile Sensing Array for Continuous Blood Pulse Wave Monitoringen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蘇裕軒,陳國聲(Kuo-Shen Chen),莊嘉揚(Jia-Yang Juang)
dc.subject.keyword奈米碳管,導電高分子,尼龍濾膜,觸覺感測器,聚二甲基矽氧烷(PDMS),動脈張力測定,連續脈波偵測,zh_TW
dc.subject.keywordCarbon nanotubes,conductive polymer,nylon membrane filter,tactile sensor,polydimethylsiloxane (PDMS),tonometric method,continuous blood pluse wave measurement,en
dc.relation.page104
dc.identifier.doi10.6342/NTU201602265
dc.rights.note有償授權
dc.date.accepted2016-08-11
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
5.17 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved