Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49873
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳健輝(Gen-Huey Chen)
dc.contributor.authorMeng-Han Yangen
dc.contributor.author楊孟翰zh_TW
dc.date.accessioned2021-06-15T11:54:01Z-
dc.date.available2016-08-24
dc.date.copyright2016-08-24
dc.date.issued2016
dc.date.submitted2016-08-10
dc.identifier.citation[1] A. Bar-Noy, S. Guha, J.Naor, and B.Schieber. Message multicasting
in heterogeneous networks. SIAM J. Comput., 30(2):347–358,
2000.
[2] A. Bar-Noy and S.Kipnis. Designing broadcasting algorithms in
the postal model for message-passing systems. Math. Systems Theorey,
27(5):431–452, 1994.
[3] R. Beier and J. Sibeyn. A powerful heuristic for telephone gossiping.
In Proc. 7th Int Colloquium Structural Info Comm. Complexity,
pages 17–36, Laquila, Italy, 2000.
[4] A. Dessmark, A. Lingas, H. Olsson, and H. Yamamoto. Optimal
broadcasting in almost trees and partial k-trees. In proceedings of
the 15th Annual Symposium on Theoretical Aspects of Computer
Science, pages 432–443, 1998.
[5] A. Farley and A. Proskurowski. Broadcasting in trees with multiple
originators. J. Parallel and Distrib. Comput., 2(4):381–386, 2006.
[6] U. Feige, D. peleg, P. Raghavan, and E. Upfal. Randomized broadcast
in networks. Proc. 1st SIGAL Int Symp. Algorithms, 450:128–
137, 1990.
[7] P. Fraigniaud and E. Lazard. Methods and problems of com- munication
in usual networks. Discrete Appl Math, 53:79–133, 1994.
[8] P. Fraigniaud and S. Vial. Approximation algorithms for broadcasting
and gossiping. J. Parallel Distrib. Comput., 43:47–55, 1997.
[9] M. Grigni and D. Peleg. Tight bounds on minimum broadcast networks.
SIAM J Discrete Math, 4:207–222, 1991.
[10] H. Harutyunyan and A. Liestman. k-broadcasting in trees. Networks,
38:163–168, 2001.
[11] H. Harutyunyan and A. Liestman. On the monotonicity of the
broadcast function. Discrete Math, 262:149–157, 2003.
[12] H. Harutyunyan and B. Shao. An efficient heuristic for broadcasting
in networks. J Parallel Distrib. Comput., 66:68–76, 2006.
[13] H. A. Harutyunyan and A. L. Liestman. Improved upper and lower
bounds for k-broadcasting. Networks, 37(2):94–101, 2001.
[14] H. A. Harutyunyan, A. L. Liestman, and B. Shao. A linear algorithm
for finding the k-broadcast center of a tree. Networks,
53(3):287–292, 2009.
[15] S. M. Hedetniemi, S. T. Hedetniemi, and A. L. Liestman. Survey of
gossiping and broadcasting in communication networks. Networks,
18(4):319–349, 1988.
[16] J. Hromkovicˇ, R. Klasing, B. Monien, and R. Peine. Dissemination
of information in interconnection networks. Combinatorial
network theory, pages 125–212, 1995.
[17] J. Hromkovicˇ, R. Klasing, A. Pelc, P. Ružicˇka, and W. Unger.
Dissemination of information in communication networks: Broadcasting,
gossiping, leader election, and fault-tolerance. Texts in
Theoretical Computer Science, An EATCS Series, 2005.
[18] A. Jakoby, R. Reischuk, and C. Shindelhauer. The complexity of
broadcasting in planar and decomposable graphs. Discrete Appl
Math, 83:179–206, 1998.
[19] J.-M. Koh and D.-W. Tcha. Information dissemination in trees
with nonuniform edge transmission times. IEEE Trans. Comput.,
40(10):1174–1177, 1991.
[20] G. Kortsarz and D. Peleg. Approximation algorithms for minimum
time broadcast. SIAM J Discrete Math, 8:401–427, 1995.
[21] S. Lee and J. Ventura. Construction of time-relaxed c-broadcast
networks. In Telecommun Syst. 24, pages 47–59, 2003.
[22] M.Elkin and G. Kortsarz. Sublogarithmic approximation for telephone
multicast. J Comput. Syst. Sci, 72:648–659, 2006.
[23] A. Shastri and S. Gaur. Multi-broadcasting in communication
networks i:trees. In Proc. Int Symp. Commun., pages 167–170,
Hsinchu, Taiwan, 1997.
[24] P. J. Slater, E. J. Cockayne, and S. T. Hedetniemi. Information of
dissemination in trees. SIAM J. Comput., 10(4):692–701, 1981.
[25] Y.-H. Su, C.-C. Lin, and D. T. Lee. Broadcasting in weighted trees
under the postal model. Theor. Comput. Sci., 621:73–81, 2016.
[26] A. Tamir. An o(pn2) algorithm for the p-median and related problems
on tree graphs. Operations Research Letters, 19(2):59–64,
1996.
[27] C.-H. Tsou, G.-H. Chen, H.-I. Yu, and C.-C. Lin. The broadcast
median problem in heterogeneous postal model. J. Comb. Optim,
25(4):602–616, 2013.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49873-
dc.description.abstract本論文提出一演算法來解決在郵政模型中的權重樹上找出k-廣播中心點以及最小廣播時間的問題。 給定一權重樹T=(V,E),任兩點間每次傳送資訊前必須花費α時間建立連線,待連線建立後,即可開始傳送資訊不需等待其他點,邊的權重在此用來表示相鄰兩點間傳送資訊所需的時間。 k-廣播指的是每個點在廣播訊息給樹中相鄰點時,每單位時間α最高能夠同時與k個相鄰點建立連線。 在此論文中我們希望能夠找出這些k-廣播中心點,且這些點能夠使得廣播訊息給樹中所有點所花費的時間是最短的, 同時我們的演算法也會決定樹中所需的最小廣播時間。在這篇論文中,我們提出了一個O(n)時間複雜度的演算法來解決這個問題。zh_TW
dc.description.abstractThe broadcasting problem is to find a broadcast center such that the transmission time from the center to all vertices is minimized. In this thesis, we consider k-broadcasting in weighted tree under postal model. In postal model, we have to create a links which cost -time before broadcasting a message, after the link created, the transmission begin without waiting other transmission complete, the term k-broadcast means the process of creating link from one vertex to at most k adjacent vertices can process simultaneously. In this thesis, the algorithm computes the set of k-broadcast centers and determines the broadcast time of the weighted tree in O(n) time.en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:54:01Z (GMT). No. of bitstreams: 1
ntu-105-R03922120-1.pdf: 702520 bytes, checksum: 15452fa5234e5488850d407344d60a78 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents試委員會審定書iii
誌謝v
摘要vii
Abstract ix
1 Introduction 1
1.1 Previous Work . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . 4
2 Algorithm k-BROADCAST 7
2.1 Terms and Definition . . . . . . . . . . . . . . . . . . . 7
2.2 Basic idea . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 An algorithm . . . . . . . . . . . . . . . . . . . . . . . 9
3 Correctness of Algorithm 11
4 Time complexity 21
4.1 Non-Sorting Labelled Method . . . . . . . . . . . . . . 21
4.2 k-BROADCAST algorithm in O(n)-time . . . . . . . . 23
5 Conclusion and Future work 27
Bibliography 29
dc.language.isoen
dc.subject郵政模型zh_TW
dc.subject演算法zh_TW
dc.subjectk-廣播中心點zh_TW
dc.subject權重樹zh_TW
dc.subject廣播問題zh_TW
dc.subjectweighted treeen
dc.subjectk-broadcasten
dc.subjectalgorithmen
dc.subjectpostal modelen
dc.subjectbroadcasting problemen
dc.title基於郵政模型中的k-廣播中心點問題zh_TW
dc.titleFinding k-broadcast centers under postal modelen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林清池(Ching-Chi Lin),胡家正(Chia-Cheng Hu),周信宏(Hsin-Hung Chou)
dc.subject.keyword廣播問題,k-廣播中心點,演算法,權重樹,郵政模型,zh_TW
dc.subject.keywordbroadcasting problem,k-broadcast,algorithm,weighted tree,postal model,en
dc.relation.page31
dc.identifier.doi10.6342/NTU201602247
dc.rights.note有償授權
dc.date.accepted2016-08-11
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
686.05 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved