請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49865完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 呂東武 | |
| dc.contributor.author | Cheng-Kai Lin | en |
| dc.contributor.author | 林晟楷 | zh_TW |
| dc.date.accessioned | 2021-06-15T11:53:29Z | - |
| dc.date.available | 2017-08-24 | |
| dc.date.copyright | 2016-08-24 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-10 | |
| dc.identifier.citation | [1] Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis. 1957;16:494-502.
[2] J. N, A. H, M. F, J. C, L. I. Status of physiotherapy rehabilitation after total knee replacement in australia. Physiotherapy Research International. 2006;11:35-47. [3] Rahmann AE, Brauer SG, Nitz JC. A specific inpatient aquatic physiotherapy program improves strength after total hip or knee replacement surgery: A randomized controlled trial. Arch Phys Med Rehabil. 2009;90:745-55. [4] Bertin KC, Komistek RD, Dennis DA, Hoff WA, Anderson DT, Langer T. In vivo determination of posterior femoral rollback for subjects having a nexgen posterior cruciate-retaining total knee arthroplasty. J Arthroplast. 2002;17:1040-8. [5] Walker PS, Komistek RD, Barrett DS, Anderson D, Dennis DA, Sampson M. Motion of a mobile bearing knee allowing translation and rotation. J Arthroplast. 2002;17:11-9. [6] Fantozzi S, Leardini A, Banks SA, Marcacci M, Giannini S, Catani F. Dynamic in-vivo tibio-femoral and bearing motions in mobile bearing knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2004;12:144-51. [7] Dennis DA, Komistek RD, Mahfouz MR, Outten JT, Sharma A. Mobile-beading total knee arthroplasty - do the polyethylene bearings rotate? Clinical Orthopaedics and Related Research. 2005:88-95. [8] Fantozzi S, Catani F, Ensini A, Leardini A, Giannini S. Femoral rollback of cruciate-retaining and posterior-stabilized total knee replacements: In vivo fluoroscopic analysis during activities of daily living. Journal of Orthopaedic Research. 2006;24:2222-9. [9] TP. A, TS. S, JO. G. Knee biomechanics and total knee replacement. 1986;1:211-9. [10] Dennis DA, Komistek RD, Mahfouz MR, Haas BD, Stiehl JB. Multicenter determination of in vivo kinematics after total knee arthroplasty. Clinical Orthopaedics and Related Research. 2003:37-57. [11] Gustke K. Quadriceps sparing minimally invasive total knee replacement: Initial experience and comparison to a matched set of non-mis total knee replacements. Orthopaedic Proceedings. 2006;88-B:90-. [12] Alevrogiannis S, Kouris T, Christoforidis N, Antonis K, Babalis I, Papadelis P. Minimally invasive total knee arthroplasty. Early results. Orthopaedic Proceedings. 2006;88-B:90-. [13] Benazzo F, Stroppa S. Mis quadriceps sparing technique in tka. Orthopaedic Proceedings. 2006;88-B:90-1. [14] Udvarhelyi I, Hangody L, Karpati Z, Tacsik B. Preliminary report of the first 52 quadriceps-sparing minimally invasive total knee replacement. Orthopaedic Proceedings. 2006;88-B:90-. [15] Bathis H, Perlick L, Tingart M, Luring C, Zurakowski D, Grifka J. Alignment in total knee arthroplasty - a comparison of computer-assisted surgery with the conventional technique. J Bone Joint Surg-Br Vol. 2004;86B:682-7. [16] Kim YH, Kim JS, Choi Y, Kwon OR. Computer-assisted surgical navigation does not improve the alignment and orientation of the components in total knee arthroplasty. J Bone Joint Surg-Am Vol. 2009;91A:14-9. [17] Chan KY, Teo YH. Patient-specific instrumentation for total knee replacement verified by computer navigation: A case report. J Orthop Surg. 2012;20:111-4. [18] Yaffe M, Luo M, Goyal N, Chan P, Patel A, Cayo M, et al. Clinical, functional, and radiographic outcomes following total knee arthroplasty with patient-specific instrumentation, computer-assisted surgery, and manual instrumentation: A short-term follow-up study. Int J Comput Assist Radiol Surg. 2014;9:837-44. [19] Kadaba MP, Ramakrishnan HK, Wootten ME. Measurement of lower-extremity kinematics during level walking. Journal of Orthopaedic Research. 1990;8:383-92. [20] Lafortune MA, Cavanagh PR, Sommer HJ, Kalenak A. 3-dimensional kinematics of the human knee during walking. Journal of Biomechanics. 1992;25:347-57. [21] Ramsey DK, Lamontagne M, Wretenberg PF, Valentin A, Engstrom B, Nemeth G. Assessment of functional knee bracing: An in vivo three-dimensional kinematic analysis of the anterior cruciate deficient knee. Clinical Biomechanics. 2001;16:61-70. [22] Mizner RL, Snyder-Mackler L. Altered loading during walking and sit-to-stand is affected by quadriceps weakness after total knee arthroplasty. Journal of Orthopaedic Research. 2005;23:1083-90. [23] Su FC, Lai KA, Hong WH. Rising from chair after total knee arthroplasty. Clinical Biomechanics. 1998;13:176-81. [24] Kuo MY, Tsai TY, Lin CC, Lu TW, Hsu HC, Shen WC. Influence of soft tissue artifacts on the calculated kinematics and kinetics of total knee replacements during sit-to-stand. Gait Posture. 2011;33:379-84. [25] Lu TW, O'Connor JJ. Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints. Journal of Biomechanics. 1999;32:129-34. [26] Torzilli PA, Greenberg RL, Insall J. An in vivo biomechanical evaluation of anterior-posterior motion of the knee. Roentgenographic measurement technique, stress machine, and stable population. The Journal of Bone & Joint Surgery. 1981;63:960-8. [27] Selvik G. Roentgen stereophotogrammetry. A method for the study of the kinematics of the skeletal system. Acta Orthopaedica Scandinavica, Supplement. 1989;60:1-51. [28] Baltzopoulos V. A videofluoroscopy method for optical distortion correction and measurement of knee-joint kinematics. Clinical Biomechanics. 1995;10:85-92. [29] Valstar ER, de Jong FW, Vrooman HA, Rozing PM, Reiber JHC. Model-based roentgen stereophotogrammetry of orthopaedic implants. Journal of Biomechanics. 2001;34:715-22. [30] Dennis DA, Komistek RD, Stiehl JB, Walker SA, Dennis KN. Range of motion after total knee arthroplasty - the effect of implant design and weight-bearing conditions. J Arthroplast. 1998;13:748-52. [31] Banks SA, Hodge WA. Accurate measurement of three-dimensional knee replacement kinematics using single-plane fluoroscopy. IEEE Trans Biomed Eng. 1996;43:638-49. [32] Kozinska D, Tretiak OJ, Nissanov J, Ozturk C. Multidimensional alignment using the euclidean distance transform. Graph Models Image Process. 1997;59:373-87. [33] Danielsson PE. Euclidean distance mapping. Computer Graphics and Image Processing. 1980;14:227-48. [34] Kriegman DJ, Ponce J. Computing exact aspect graphs of curved objects - solids of revolution. Int J Comput Vis. 1990;5:119-35. [35] Tsai TY, Lu TW, Chen CM, Kuo MY, Hsu HC. A volumetric model-based 2d to 3d registration method for measuring kinematics of natural knees with single-plane fluoroscopy. Med Phys. 2010;37:1273-84. [36] Lu TW, Tsai TY, Kuo MY, Hsu HC, Chen HL. In vivo three-dimensional kinematics of the normal knee during active extension under unloaded and loaded conditions using single-plane fluoroscopy. Med Eng Phys. 2008;30:1004-12. [37] Sutherland IE. Three-dimensional data input by tablet. Proceedings of the IEEE. 1974;62:453-61. [38] Tsai TY. Development of a 3d fluoroscopy method and its integration with stereophotogrammetry to study the effects of soft tissue artifacts on the calculated mechanical variables of the knee during functional activities. Doctoral: National Taiwan University; 2010. [39] Amiri S, Anglin C, Agbanlog K, Masri BA, Wilson DR. A model-free feature-based bi-planar rsa method for kinematic analysis of total knee arthroplasty. Journal of Biomechanical Engineering-Transactions of the Asme. 2012;134:8. [40] Wu G, Cavanagh PR. Isb recommendations for standardization in the reporting of kinematic data. Journal of Biomechanics. 1995;28:1257-60. [41] Clary CW, Fitzpatrick CK, Maletsky LP, Rullkoetter PJ. The influence of total knee arthroplasty geometry on mid-flexion stability: An experimental and finite element study. Journal of Biomechanics. 2013;46:1351-7. [42] Dennis DA, Komistek RD, Colwell CE, Ranawat CS, Scott RD, Thornhill TS, et al. In vivo anteroposterior femorotibial translation of total knee arthroplasty: A multicenter analysis. Clinical Orthopaedics and Related Research. 1998:47-57. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49865 | - |
| dc.description.abstract | 全人工膝關節置換術為晚期退行性骨關節炎主要的治療方式之一。傳統標準的全人工膝關節置換術(CS-TKR)已經可達到良好的膝關節使用壽命。近年來,全人工膝關節置換之微創手術(MIS-TKR)的方法已開始蓬勃發展,旨在減少術中軟組織的傷害,以盡量縮短術後恢復期,加速病患在功能上的恢復。另一方面,客製化手術器械的全人工膝關節置換術(PSI-TKR)為最新被提出且已運用在臨床上的手術方式,PSI-TKR 手術透過術前以三維影像模擬並製作專屬手術模具,手術醫師因此可依個人化之模具更精準的植入人工關節植體以增進術後膝關節在功能上的恢復。然而,三種不同的手術方式,對於術後日常活動功能表現之影響,卻從未有過定量的評估與比較。
因此,本研究的目的旨在量測並量化患者在兩種不同的全人工膝關節置換後之運動(MIS-TKR與PSI-TKR),量測的運動項目包含了主動的膝關節屈曲與伸展和坐到站等日常生活常見之動作,進一步的了解不同的手術方法對於術後膝關節功能恢復的影響。其結果顯示,MIS-TKR與PSI-TKR患者於位移之運動學表現皆相同。然而,MIS-TKR患者於三種動作下皆處於外轉角度,使之缺少螺旋歸位機轉,並且在表面運動學上的表現有接觸點集中的現象,而長期的受力不良容易造成外側墊片的損毀,進而降低人工關節之壽命。建議微創手術時應謹慎處理避免造成過多外轉角度所造成的後遺症。 | zh_TW |
| dc.description.abstract | Total knee replacements (TKR) have been the main choice of treatment for alleviating pain and restoring physical function in advanced degenerative osteoarthritis (OA) of the knee. In recent years, interests in minimally invasive surgery TKR (MIS-TKR) have increased substantially in industry and between orthopedic surgeons and patients. Moreover, patient-specific instrumentation (PSI) was designed to replace the previous surgical instrumentations without the needs for the computer navigation system. PSI-TKR was a newly developed surgical technique, aiming to more accurately restore the knee axis of the TKR than previous approaches, and was conducted with the minimally invasive surgical approaches in general. Therefore, the purposes of the project were to measure the 3D kinematics of the TKR in vivo. The kinematic data of the knee for the patients with MIS-TKR and PSI-TKR after surgery six-monthly have been calculated during functional tasks , i.e. active knee extension, flexion and sit-to-stand. According to the results, The performances of MIS-TKR and PSI-TKR patients are regarded to be equal on the translation except on the M/L direction. However, the differences on the M/L direction were too slight to affect the movement clinically. To be mentioned, MIS-TKR didn’t externally rotate to represent the screw home mechanism as a normal knee. It could induce abnormal articular contact pattern to the plastic insert which might shorten the life cycle of the TKR. It is suggested that the anatomical pose of the TKR in the minimally invasive surgery should be dealt with much more care to avoid consistent lateral contact broken. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T11:53:29Z (GMT). No. of bitstreams: 1 ntu-105-R03548014-1.pdf: 3179555 bytes, checksum: 3f8c71295dc34365ae4fe84da45f9a4e (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 摘要 I
ABSTRACT II 目錄 III 圖目錄 IV 第一章 緒論 1 第一節 研究背景 1 第二節 微創型全人工膝關節置換 3 第三節 客製化全人工膝關節置換 6 第四節 膝關節運動學活體量測 8 第五節 研究目的 11 第二章 材料與方法 13 第一節 受試者 13 第二節 實驗流程 14 第三節 系統校正 17 第四節 數據分析 18 第五節 統計分析 25 第三章 結果 26 第一節 主動膝關節伸直 27 第二節 主動膝關節屈曲 32 第三節 坐到站 37 第四章 討論 42 第五章 結論 45 第六章 參考文獻 47 | |
| dc.language.iso | zh-TW | |
| dc.subject | 人工膝關節 | zh_TW |
| dc.subject | 運動學 | zh_TW |
| dc.subject | 影像比對 | zh_TW |
| dc.subject | 動態造影技術 | zh_TW |
| dc.subject | 客製化 | zh_TW |
| dc.subject | 微創 | zh_TW |
| dc.subject | Total knee replacement | en |
| dc.subject | minimally invasive surgery | en |
| dc.subject | image registration | en |
| dc.subject | kinematics | en |
| dc.subject | fluoroscopy | en |
| dc.subject | patient-specific instrumentation | en |
| dc.title | 微創型與客製化導引植入全人工膝關節之三維活體功能運動學比較研究 | zh_TW |
| dc.title | Comparisons of In Vivo Three-Dimensional Kinematics of Minimally-Invasive and Patient-Specific Instrument Total Knee Replacements During Functional Activities | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 徐慶琪,郭建忠,許維君,郭美英 | |
| dc.subject.keyword | 人工膝關節,微創,客製化,動態造影技術,影像比對,運動學, | zh_TW |
| dc.subject.keyword | Total knee replacement,minimally invasive surgery,patient-specific instrumentation,fluoroscopy,image registration,kinematics, | en |
| dc.relation.page | 50 | |
| dc.identifier.doi | 10.6342/NTU201602297 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-08-11 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 3.11 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
