Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49846
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃心豪
dc.contributor.authorChi-Kuang Linen
dc.contributor.author林紀匡zh_TW
dc.date.accessioned2021-06-15T11:52:12Z-
dc.date.available2017-10-26
dc.date.copyright2016-10-26
dc.date.issued2016
dc.date.submitted2016-08-11
dc.identifier.citation[1] V. G. Veselago, 'The electrodynamics of subtances with simultaneously negative values of ε and μ,' Soviet Physics Uspekhi, vol. 10, p. 509-514, 1968.
[2] Z. Liu, 'Locally resonant sonic materials,' Science, vol. 289, p. 1734-1736, 2000.
[3] D. Bigoni, S. Guenneau, A. B. Movchan, and M. Brun, 'Elastic metamaterials with inertial locally resonant structures: application to lensing and localization,' Physical Review B, vol. 87, p. 174303, 2013.
[4] T. Kundu, E. Baravelli, M. Carrara, and M. Ruzzene, 'High stiffness, high damping chiral metamaterial assemblies for low-frequency applications,' Health Monitoring of Structural and Biological Systems, vol. 8695, p. 86952K, 2013.
[5] X. N. Liu, G. K. Hu, C. T. Sun, and G. L. Huang, 'Wave propagation characterization and design of two-dimensional elastic chiral metacomposite,' Journal of Sound and Vibration, vol. 330, p. 2536-2553, 2011.
[6] R. Lakes, 'Advances in negative Poisson's ratio materials,' Advanced Materials, vol. 5, p. 293-296, 1993.
[7] J. N. Grima, R. Caruana-Gauci, M. R. Dudek, K. W. Wojciechowski, and R. Gatt, 'Smart metamaterials with tunable auxetic and other properties,' Smart Materials and Structures, vol. 22, p. 084016, 2013.
[8] X. N. Liu, G. K. Hu, G. L. Huang, and C. T. Sun, 'An elastic metamaterial with simultaneously negative mass density and bulk modulus,' Applied Physics Letters, vol. 98, p. 251907, 2011.
[9] G. Gantzounis, M. Serra-Garcia, K. Homma, J. M. Mendoza, and C. Daraio, 'Granular metamaterials for vibration mitigation,' Journal of Applied Physics, vol. 114, p. 093514, 2013.
[10] H. Sun, X. Du, and P. F. Pai, 'Theory of metamaterial beams for broadband vibration absorption,' Journal of Intelligent Material Systems and Structures, vol. 21, p. 1085-1101, 2010.
[11] J. Smardzewski, D. Jasińska, and M. Janus-Michalska, 'Structure and properties of composite seat with auxetic springs,' Composite Structures, vol. 113, p. 354-361, 2014.
[12] Z.-D. Ma, Y. Liu, X. Liu, C. Sun, and Y. Cui, 'Ultralightweight runflat tires based upon negative Poisson ratio (NPR) auxetic structures,' U.S. Patent No. 08544515, 2013.
[13] M. N. Ali and I. U. Rehman, 'An auxetic structure configured as oesophageal stent with potential to be used for palliative treatment of oesophageal cancer; development and in vitro mechanical analysis,' Journal of Materials Science: Materials in Medicine, vol. 22, p. 2573-2581, 2011.
[14] N. T. Kadam, K. S. Janwalkar, and A. A. Odhekar, 'Application of metamaterial to improve isolation between two microstrip antennas,' International Journal of Engineering Research and Technology, vol. 3, p.1184-1188, 2014.
[15] M. M. Islam, M. T. Islam, M. Samsuzzaman, and M. R. I. Faruque, 'A negative index metamaterial antenna for UWB microwave imaging applications,' Microwave and Optical Technology Letters, vol. 57, p. 1352-1361, 2015.
[16] Y. J. Yoo, H. Y. Zheng, Y. J. Kim, J. Y. Rhee, J. H. Kang, K. W. Kim, H. Cheong, Y. H. Kim, and Y. P. Lee, 'Flexible and elastic metamaterial absorber for low frequency, based on small-size unit cell,' Applied Physics Letters, vol. 105, p. 041902, 2014.
[17] S. H. Lee, C. M. Park, Y. M. Seo, Z. G. Wang, and C. K. Kim, ' Acoustic metamaterial with negative density,' Physics Letters A, vol. 373, p. 4464-4469, 2013.
[18] B. J. Kwon, J. Y. Jung, D. Lee, K. C. Park, and I. K. Oh, 'Tunable acoustic waveguide based on vibro-acoustic metamaterials with shunted piezoelectric unit cells,' Smart Materials and Structures, vol. 24, p. 105018, 2015.
[19] F. Chen and D. Y. Lei, 'Experimental realization of extreme heat flux concentration with easy-to-make thermal metamaterials,' Scientific Reports, vol. 5, p. 11552, 2015.
[20] S. Narayana and Y. Sato, 'Heat flux manipulation with engineered thermal materials,' Physical Review Letters, vol. 108, p. 214303, 2012.
[21] N. Landy, S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, 'Perfect metamaterial absorber,' Physical Review Letters, vol. 100, p. 207402, 2008.
[22] J. B. Pendry and J. Li, 'An acoustic metafluid: realizing a broadband acoustic cloak,' New Journal of Physics, vol. 10, p. 115032, 2008.
[23] J. Yang, M. Huang, C. Yang, J. Peng, and J. Chang, 'An external acoustic cloak with n-sided regular polygonal cross section based on complementary medium,' Computational Materials Science, vol. 49, p. 9-14, 2010.
[24] A. Khlopotin, P. Olsson, and F. Larsson, 'Transformational cloaking from seismic surface waves by micropolar metamaterials with finite couple stiffness,' Wave Motion, vol. 58, p. 53-67, 2015.
[25] Z. Liu, C. T. Chan, and P. Sheng, 'Analytic model of phononic crystals with local resonances,' Physical Review B, vol. 71, p. 014103, 2005.
[26] S. Yao, X. Zhou, and G. Hu, 'Experimental study on negative effective mass in a 1D mass–spring system,' New Journal of Physics, vol. 10, p. 043020, 2008.
[27] H. H. Huang, C. T. Sun, and G. L. Huang, 'On the negative effective mass density in acoustic metamaterials,' International Journal of Engineering Science, vol. 47, p. 610-617, 2009.
[28] H. H. Huang and C. T. Sun, 'Wave attenuation mechanism in an acoustic metamaterial with negative effective mass density,' New Journal of Physics, vol. 11, p. 013003, 2009.
[29] G. L. Huang and C. T. Sun, 'Band gaps in a multiresonator acoustic metamaterial,' Journal of Vibration and Acoustics, vol. 132, p. 031003, 2010.
[30] K. T. Tan, H. H. Huang, and C. T. Sun, 'Negative effective mass density of acoustic metamaterial using dual-resonator spring-mass model,' Metamaterials 2012: The Sixth International Congress on Advanced Electromagnetic Materials in Microwaves and Optics, St. Petersburg, Russia, Sep 17-22, 2012.
[31] R. Zhu, X. N. Liu, G. K. Hu, C. T. Sun, and G. L. Huang, 'A chiral elastic metamaterial beam for broadband vibration suppression,' Journal of Sound and Vibration, vol. 333, p. 2759-2773, 2014.
[32] D. Yu, Y. Liu, H. Zhao, G. Wang, and J. Qiu, 'Flexural vibration band gaps in Euler-Bernoulli beams with locally resonant structures with two degrees of freedom,' Physical Review B, vol. 73, p. 064301, 2006.
[33] D. Yu, Y. Liu, G. Wang, H. Zhao, and J. Qiu, 'Flexural vibration band gaps in Timoshenko beams with locally resonant structures,' Journal of Applied Physics, vol. 100, p. 124901, 2006.
[34] J. S. Chen, B. Sharma, and C. T. Sun, 'Dynamic behaviour of sandwich structure containing spring-mass resonators,' Composite Structures, vol. 93, p. 2120-2125, 2011.
[35] H. H. Huang and C. T. Sun, 'Theoretical investigation of the behavior of an acoustic metamaterial with extreme Young's modulus,' Journal of the Mechanics and Physics of Solids, vol. 59, p. 2070-2081, 2011.
[36] H. H. Huang and C. T. Sun, 'Locally resonant acoustic metamaterials with 2D anisotropic effective mass density,' Philosophical Magazine, vol. 91, p. 981-996, 2011.
[37] R. Zhu, H. H. Huang, G. L. Huang, and C. T. Sun, 'Microstructure continuum modeling of an elastic metamaterial,' International Journal of Engineering Science, vol. 49, p. 1477-1485, 2011.
[38] T. T. Wu, Z. G. Huang, T. C. Tsai, and T. C. Wu, 'Evidence of complete band gap and resonances in a plate with periodic stubbed surface,' Applied Physics Letters, vol. 93, p. 111902, 2008.
[39] M. Oudich, Y. Li, B. M. Assouar, and Z. Hou, 'A sonic band gap based on the locally resonant phononic plates with stubs,' New Journal of Physics, vol. 12, p. 083049, 2010.
[40] M. Oudich, M. Senesi, M. B. Assouar, M. Ruzenne, J. H. Sun, B. Vincent, Z. Hou, and T. T. Wu, 'Experimental evidence of locally resonant sonic band gap in two-dimensional phononic stubbed plates,' Physical Review B, vol. 84, p. 165136, 2011.
[41] J. C. Hsu, 'Low-frequency forbidden bands in phononic crystal plates with Helmholtz resonators,' Japanese Journal of Applied Physics, vol. 50, p. 07HB01, 2011.
[42] Y. Xiao, J. Wen, and X. Wen, 'Flexural wave band gaps in locally resonant thin plates with periodically attached spring–mass resonators,' Journal of Physics D: Applied Physics, vol. 45, p. 195401, 2012.
[43] R. Zhu, G. L. Huang, H. H. Huang, and C. T. Sun, 'Experimental and numerical study of guided wave propagation in a thin metamaterial plate,' Physics Letters A, vol. 375, p. 2863-2867, 2011.
[44] N. Gao, J. H. Wu, and L. Yu, 'Research on bandgaps in two-dimensional phononic crystal with two resonators,' Ultrasonics, vol. 56, p. 287-293, 2015.
[45] Y. Li, T. Chen, X. Wang, K. Yu, and R. Song, 'Band structures in two-dimensional phononic crystals with periodic Jerusalem cross slot,' Physica B: Condensed Matter, vol. 456, p. 261-266, 2015.
[46] H. Peng and P. F. Pai, 'Acoustic metamaterial plates for elastic wave absorption and structural vibration suppression,' International Journal of Mechanical Sciences, vol. 89, p. 350-361, 2014.
[47] H. H. Huang and C. T. Sun, 'Anomalous wave propagation in a one-dimensional acoustic metamaterial having simultaneously negative mass density and Young's modulus,' The Journal of the Acoustical Society of America, vol. 132, p. 2887-2895, 2012.
[48] H. Chen, H. Zeng, C. Ding, C. Luo, and X. Zhao, 'Double-negative acoustic metamaterial based on hollow steel tube meta-atom,' Journal of Applied Physics, vol. 113, p. 104902, 2013.
[49] C. T. Chan, J. Li, and K. H. Fung 'On extending the concept of double negativity to acoustic waves,' Journal of Zhejiang University SCIENCE A, vol. 7, p. 24-28, 2006.
[50] S. H. Lee, C. M. Park, Y. M. Seo, Z. G. Wang, and C. K. Kim, 'Acoustic metamaterial with negative modulus,' Journal of Physics: Condensed Matter , vol. 21, p. 175704, 2009.
[51] N. Fang, D. Xi, J. Xu, M. Ambati, W. Srituravanich, C. Sun, and X. Zhang, 'Ultrasonic metamaterials with negative modulus,' Nature Materials, vol. 5, p. 452-456, 2006.
[52] A. E. H. Love, 'The small free vibrations and deformations of elastic shells,' Philosophical Transactions of the Royal Society of London, vol. 179, p. 491-549, 1888.
[53] H. Osterberg and J. W. Cookson, 'A theory of two-dimensional longitudinal and flexural vibrations in rectangular isotropic plates,' Journal of Applied Physics, vol. 6, p. 234-246, 1935.
[54] G. H. Li, Y. J. Li, X. C. Zhang, G. R. Bai, Z. J. Feng, and K. Zhou, 'Study of power source for shock environment of ship equipment,' Journal of Ship Mechanics, vol. 2, p. 37-54, 1998.
[55] H. B. Wen, J. Zhang, Q. Yin, and Q. S. Huang, 'Wavelet packet analysis of time-frequency characteristic of cabin shock response due to underwater explosion,' Engineering Mechanics, vol. 25, p. 199-203, 2008.
[56] X. M. Shen, S. G. Zuo, J. J. Cai, and Q. Feng, 'Noise and vibration tests for fuel cell vehicel and noise sources identification,' Technical Acoustics, vol. 27, p. 570-576, 2008.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49846-
dc.description.abstract超穎材料是一種人造的特殊材料,透過幾何結構設計使其產生一些特殊性質,例如等效負質量、等效負楊式模數等,且彈性超穎材料的頻散圖中會出現能隙的頻段,若波傳在能隙頻段中傳遞將產生振幅衰減的現象。本研究將焦點擺在能隙的頻段內,以一維負楊氏模數理論模型為基礎,將其簡化並實際製作出超穎材料樑,經過模擬及實驗證明本研究所提出的超穎材料樑能夠使波傳190 Hz至300 Hz之間產生振幅衰減的現象。
接著將超穎材料樑進一步延伸至超穎材料板,預期在頻散圖中產生能隙頻段,因此文中提出一系列設計、理論計算、數值模擬及分析的方法。首先設計出超穎材料板並進行理論推導,推導出模型的運動方程式及頻散方程式,並透過頻散圖分析其能隙的範圍。接著繪製3D模型匯入有限元素分析軟體Comsol 5.0進行模擬分析,並將理論計算與模擬的結果互相比對。最後透過改變材料參數、幾何參數等方式觀察這些參數對能隙範圍及頻段的影響,並根據現今的工程問題提出此模型應用的建議。
經上述方法,本文成功建立超穎材料板的理論頻散方程式,繪製出立體及平面頻散圖,並與數值模擬互相比較,發現兩者針對能隙頻段的分析非常吻合,且證實本研究所提出的超穎材料板在373Hz至440Hz之間會產生能隙。最後藉由參數研究將各項參數對能隙頻段的影響列於表 5 1,透過參數調整後,此模型可應用於減少滯後流對船艦的影響或降低燃料電池汽車運作所產生的噪音。
zh_TW
dc.description.abstractMetamaterials are man-made composite materials, with specialized geometrical designs, metamaterials were aimed to possess several unusual properties such as negative mass density, negative Young’s modulus, etc. It was found that bandgaps can be created by the local resonance effect of elastic metamaterials, and the wave propagation will attenuate when propagate in the bandgap. This thesis will focus on the bandgaps. We refer effective negative Young’s modulus metamaterial model, then the model can be further simplified and extended to metamaterial beam (meta-beam). Through simulations and experiments, it is confirmed that the wave amplitude will be attenuated when it propagate through the meta-beam in the frequencies between 190 Hz to 300 Hz.
Then extend the beam to the plate. The methods for modeling, analysis, and design of metamaterial plate (meta-plate) are presented. First, governing equations and dispersion equations are derived, and the bandgap is created in the dispersion curve by the resonance systems. Second, a method to design a 3D model is proposed, and the dispersion curve of the meta-plate is explicitly confirmed by numerical simulations in Comsol 5.0. It is confirmed that the bandgap of the proposed plate model is between 373 Hz to 440 Hz. Third, the parametric studies were also carried out, and listed in table 5-1. Finally, potential applications of the proposed meta-plate are decreasing the damages caused by after-flow of ship or reduce the noise of fuel cell vehicles.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:52:12Z (GMT). No. of bitstreams: 1
ntu-105-R03525022-1.pdf: 6544054 bytes, checksum: 2cd757e739dabb690492b05b765e986b (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents誌謝 i
中文摘要 iii
ABSTRACT iv
目錄 v
圖目錄 vii
表目錄 xi
第1章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 研究架構 6
第2章 超穎材料樑 8
2.1 等效負楊氏模數模型理論 8
2.2 超穎材料樑模型理論 10
2.3 二維超穎材料樑之頻散圖 12
2.4 超穎材料樑的振動行為分析 16
2.4.1 超穎材料樑試體 16
2.4.2 實驗設置及結果 17
2.4.3 數值模擬方法及結果 26
2.4.4 實際試體頻散圖 28
2.4.5 結果比較 34
2.4.6 三維結構頻散圖與振動模態分析 35
2.4.7 參數研究與探討 40
第3章 超穎材料板頻散分析方法 44
3.1 Kirchhoff–Love板理論 44
3.2 理論模型建構 44
3.3 超穎材料板模型理論 47
3.3.1 z方向振動理論推導 47
3.3.2 三維振動理論推導 51
3.4 理論頻散圖繪製 57
3.5 數值模擬方法 63
第4章 理論頻散圖及模擬結果 65
4.1 理論頻散圖 65
4.1.1 z方向振動理論頻散圖 65
4.1.2 三維振動理論頻散圖 68
4.2 數值模擬結果 70
4.2.1 z方向振動模擬結果 70
4.2.2 三維振動模擬結果 74
第5章 結果比較與討論 76
5.1 模擬與理論頻散圖比較 76
5.1.1 z方向振動頻散圖比較 76
5.1.2 三維振動頻散圖比較 77
5.1.3 模擬頻散圖誤差討論 91
5.2 頻散圖參數比較 94
5.3 工程應用 107
第6章 結論與未來展望 112
參考文獻 114
附錄 121
數值模擬流程 121
dc.language.isozh-TW
dc.title二維彈性超穎材料板之波傳行為探討zh_TW
dc.titleNumerical study of two dimensional elastic metamaterial plateen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee宋家驥,吳文中,劉建豪
dc.subject.keyword超穎材料,平板,局部共振,橫波衰減,振動阻隔,zh_TW
dc.subject.keywordMechanical Metamaterial,Plate,Local Resonance,Transverse Wave Attenuation,Vibration Isolation,en
dc.relation.page126
dc.identifier.doi10.6342/NTU201602278
dc.rights.note有償授權
dc.date.accepted2016-08-11
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
6.39 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved