Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 微生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49792
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor戴榮湘(Jung-Hsiang Tai)
dc.contributor.authorYen-Yu Yangen
dc.contributor.author楊硯宇zh_TW
dc.date.accessioned2021-06-15T11:48:41Z-
dc.date.available2021-08-26
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-08-12
dc.identifier.citation參考資料
1. World Health Organization, Global incidence and prevalence of selected curable sexually transmitted infections – 2008. 2012. 1-20.
2. Cotch, M.F., et al., Trichomonas vaginalis associated with low birth weight and preterm delivery. The Vaginal Infections and Prematurity Study Group. Sex Transm Dis., 1997. 24(6): p. 353-60.
3. Shafir, S.C., F.J. Sorvillo, and L. Smith, Current Issues and Considerations Regarding Trichomoniasis and Human Immunodeficiency Virus in African-Americans. Clin Microbiol Rev., 2009. 22(1): p. 37-45.
4. Stark, J.R., et al., Prospective Study of Trichomonas vaginalis Infection and Prostate Cancer Incidence and Mortality: Physicians' Health Study. J Natl Cancer Inst., 2009. 101(20): p. 1406-11.
5. Simeckova, M., et al., Chronic Trichomoniasis and Cervical Cancer. Obstetrics & Gynecology, 1962. 20(3): p. 410-12.
6. Zhang, Z.F. and C.B. Begg, Is Trichomonas vaginalis a cause of cervical neoplasia? Results from a combined analysis of 24 studies. Int J Epidemiol. , 1994. 23(4): p. 682-90.
7. Twu, O., et al., Trichomonas vaginalis homolog of macrophage migration inhibitory factor induces prostate cell growth, invasiveness, and inflammatory responses. Proc Natl Acad Sci U S A., 2014. 111(22): p. 8179-84.
8. Fichorova, R.N., et al., Trichomonas vaginalis Lipophosphoglycan Triggers a Selective Upregulation of Cytokines by Human Female Reproductive Tract Epithelial Cells. Infect Immun., 2006. 74(10): p. 5773-79.
9. Dunne, R.L., et al., Drug resistance in the sexually transmitted protozoan Trichomonas vaginalis. Cell Res, 2003. 13(4): p. 239-49.
10. Schwebke, J.R. and F.J. Barrientes, Prevalence of Trichomonas vaginalis Isolates with Resistance to Metronidazole and Tinidazole. Antimicrob Agents Chemother., 2006. 50(12): p. 4209-10.
11. Arroyo, R., et al., Signalling of Trichomonas vaginalis for amoeboid transformation and adhesion synthesis follows cytoadherence. Mol Microbiol., 1993. 7(2): p. 299-309.
12. Okumura, C.Y., L.G. Baum, and P.J. Johnson, Galectin-1 on cervical epithelial cells is a receptor for the sexually transmitted human parasite Trichomonas vaginalis. Cell Microbiol., 2008. 10(10): p. 2078-90.
13. Twu, O., et al., Trichomonas vaginalis Exosomes Deliver Cargo to Host Cells and Mediate Host∶ Parasite Interactions. PLoS Pathog., 2013. 9(7): p. e1003482.
14. Rendón-Gandarilla, F.J., et al., The TvLEGU-1, a Legumain-Like Cysteine Proteinase, Plays a Key Role in Trichomonas vaginalis Cytoadherence. Biomed Res Int., 2013. 2013: p. 561979.
15. Alderete, J.F., D. Provenzano, and M.W. Lehker, Iron mediates Trichomonas vaginalis resistance to complement lysis. Microb Pathog., 1995. 19(2): p. 93-103.
16. O’Hanlon, D.E., T.R. Moench, and R.A. Cone, Vaginal pH and Microbicidal Lactic Acid When Lactobacilli Dominate the Microbiota. PLoS ONE, 2013. 8(11): p. e80074.
17. Wagner, G., R.J. Levin, and L. Bohr, Diaphragm insertion increases human vaginal oxygen tension. Am J Obstet Gynecol., 1988. 158(5): p. 1040-3.
18. Benchimol, M., Hydrogenosomes under microscopy. Tissue and Cell, 2009. 41(3): p. 151-68.
19. Dyall, S.D., et al., Non-mitochondrial complex I proteins in a hydrogenosomal oxidoreductase complex. Nature, 2004. 431(7012): p. 1103-07.
20. Quon, D.V., C.E. d'Oliveira, and P.J. Johnson, Reduced transcription of the ferredoxin gene in metronidazole-resistant Trichomonas vaginalis. Proc Natl Acad Sci U S A., 1992. 89(10): p. 4402-06.
21. Dyall, S.D. and P.J. Johnson, Origins of hydrogenosomes and mitochondria: evolution and organelle biogenesis. Current Opinion in Microbiology, 2000. 3(4): p. 404-11.
22. Bradley, P.J., et al., Targeting and translocation of proteins into the hydrogenosome of the protist Trichomonas: similarities with mitochondrial protein import. EMBO J., 1997. 16(12): p. 3484-93.
23. Sutak, R., et al., Mitochondrial-type assembly of FeS centers in the hydrogenosomes of the amitochondriate eukaryote Trichomonas vaginalis. Proc Natl Acad Sci U S A., 2004. 101(28): p. 10368-73.
24. Lill, R. and U. Mühlenhoff, Iron-sulfur protein biogenesis in eukaryotes: components and mechanisms. Annu Rev Cell Dev Biol., 2006. 55: p. 457-86.
25. Schneider, R.E., et al., The Trichomonas vaginalis hydrogenosome proteome is highly reduced relative to mitochondria, yet complex compared with mitosomes. International Journal for Parasitology, 2011. 41(13–14): p. 1421-34.
26. Carlton, J.M., et al., Draft Genome Sequence of the Sexually Transmitted Pathogen Trichomonas vaginalis. Science, 2007. 315(5809): p. 207-212.
27. Tsai, C.D., H.W. Liu, and J.H. Tai, Characterization of an iron-responsive promoter in the protozoan pathogen Trichomonas vaginalis. J Biol Chem. , 2002. 277(7): p. 5153-62.
28. Gould, S.B., et al., Deep sequencing of Trichomonas vaginalis during the early infection of vaginal epithelial cells and amoeboid transition. Int J Parasitol., 2013. 43(9): p. 707-19.
29. Viscogliosi, E., et al., Phylogeny of trichomonads based on partial sequences of large subunit rRNA and on cladistic analysis of morphological data. J Eukaryot Microbiol., 1993. 40(4): p. 411-21.
30. Winterbourn, C.C., Toxicity of iron and hydrogen peroxide: the Fenton reaction. Toxicol Lett., 1995. 82(83): p. 969-74.
31. Gozzelino, R. and P. Arosio, Iron Homeostasis in Health and Disease. Int J Mol Sci., 2016. 17(1): p. e130.
32. Wang, J. and K. Pantopoulos, Regulation of cellular iron metabolism. Biochem J., 2011. 434(3): p. 365-81.
33. González-Chávez, S.A., S. Arévalo-Gallegos, and Q. Rascón-Cruz, Lactoferrin: structure, function and applications. Int J Antimicrob Agents., 2009. 33(4): p. 301.e1-e8.
34. Torti, F.M. and S.V. Torti, Regulation of ferritin genes and protein. Blood., 2002. 99(10): p. 3505-16.
35. Rouault, T.A., The role of iron regulatory proteins in mammalian iron homeostasis and disease. Nat Chem Biol., 2006. 2(8): p. 406-14.
36. Hood, M.I. and E.P. Skaar, Nutritional immunity: transition metals at the pathogen–host interface. Nat Rev Microbiol., 2012. 10(8): p. 525-37.
37. Ganz, T. and E. Nemeth, Iron homeostasis in host defence and inflammation. Nat Rev Immunol., 2015. 15(8): p. 500-10.
38. Skaar, E.P., The Battle for Iron between Bacterial Pathogens and Their Vertebrate Hosts. PLoS Pathog., 2010. 6(8): p. e1000949.
39. Stijlemans, B., et al., Iron Homeostasis and Trypanosoma brucei Associated Immunopathogenicity Development: A Battle/Quest for Iron. Biomed Res Int., 2015. 2015: p. 819389.
40. Mehlert, A., M.R. Wormald, and M.A. Ferguson, Modeling of the N-Glycosylated Transferrin Receptor Suggests How Transferrin Binding Can Occur within the Surface Coat of Trypanosoma brucei. PLoS Pathog., 2012. 8(4): p. e1002618.
41. Clark, M.A., et al., Host iron status and iron supplementation mediate susceptibility to erythrocytic stage Plasmodium falciparum. Nat Commun., 2014. 5.
42. Portugal, S., et al., Host mediated regulation of superinfection in malaria. Nat Med. , 2011. 17(6): p. 732-37.
43. Mussmann, R., et al., Factors affecting the level and localization of the transferrin receptor in Trypanosoma brucei. J Biol Chem. , 2004. 279(39): p. 40690-8.
44. Figueroa-Anguloa, E.E., et al., The effects of environmental factors on the virulence of Trichomonas vaginalis. Microbes Infect, 2012. 14(15): p. 1411-27.
45. Beltrán, N.C., et al., Iron-Induced Changes in the Proteome of Trichomonas vaginalis Hydrogenosomes. PLoS One, 2013. 8(5): p. e65148.
46. De Jesus, J.B., et al., A further proteomic study on the effect of iron in the human pathogen Trichomonas vaginalis. 7, 2007. 12: p. 1961-72.
47. Hsu, H.M., et al., Signal Transduction Triggered by Iron to Induce the Nuclear Importation of a Myb3 Transcription Factor in the Parasitic Protozoan Trichomonas vaginalis. J Biol Chem, 2014. 289(42).
48. Ong, S.J., et al., Activation of multifarious transcription of an adhesion protein ap65-1 gene by a novel Myb2 protein in the protozoan parasite Trichomonas vaginalis. J Biol Chem., 2007. 6716-25.
49. Ong, S.J., et al., Multifarious Transcriptional Regulation of Adhesion Protein Gene ap65-1 by a Novel Myb1 Protein in the Protozoan Parasite Trichomonas vaginalis. Eukaryot Cell. , 2006. 5(2): p. 391-99.
50. Robert, T.S., Structure of the Chromatosome, a Chromatin Particle Containing 160 Base Pairs of DNA and All the Histones? Biochemistry, 1978. 12(7): p. 5524-31.
51. Li, G. and P. Zhu, Structure and organization of chromatin fiber in the nucleus. FEBS Letters, 2015. 589: p. 2893-904.
52. Luger, K., et al., Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature, 1997. 389(6648): p. 251-60.
53. Strahl, B.D. and C.D. Allis, The language of covalent histone modifications. Nature, 2000. 403(6765): p. 41-45.
54. Musselman, C.A., et al., Perceiving the epigenetic landscape through histone readers. Nat Struct Mol Biol., 2012. 19(12): p. 1218-27.
55. Santos-Rosa, H., et al., Active genes are tri-methylated at K4 of histone H3. Nature, 2002. 419(6905): p. 407-11.
56. Bannister, A.J., et al., Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature, 2001. 410(6824): p. 120-24.
57. Lachner, M., et al., Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature, 2001. 410(6824): p. 116-20.
58. Rossetto, D., N. Avvakumov, and J. Côté, Histone phosphorylation: a chromatin modification involved in diverse nuclear events. Epigenetics. , 2012. 7(10): p. 1098-108.
59. Bonnet, J., D. Devys, and L. Tora, Histone H2B ubiquitination: signaling not scrapping. Drug Discov Today Technol., 2014. 12: p. e19-e27.
60. Kurdistani, S.K. and M. Grunstein, Histone acetylation and deacetylation in yeast. Nat. Rev. Mol. Cell Biol, 2003. 4: p. 276-84.
61. Seto, E. and M. Yoshida, Erasers of Histone Acetylation: The Histone Deacetylase Enzymes. Cold Spring Harb Perspect Biol, 2014. 6(4).
62. de Ruijter, A.J., et al., Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J., 2003. 370(3): p. 737-49.
63. Luo, J., et al., Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature, 2000. 408(6810): p. 377-81.
64. Zhang, W., et al., ELL inhibits E2F1 transcriptional activity by enhancing E2F1 deacetylation via recruitment of histone deacetylase 1. Mol Cell Biol., 2014. 34(4): p. 765-75.
65. Zhang, Y., et al., HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo. The EMBO Journal, 2003. 22(5): p. 1168-79.
66. Li, G., et al., HDAC6 α-tubulin deacetylase: A potential therapeutic target in neurodegenerative diseases. Journal of the Neurological Sciences, 2011. 304(1–2): p. 1-8.
67. Rundlett, S.E., et al., HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that regulate silencing and transcription. Proceedings of the National Academy of Sciences of the United States of America, 1996. 93(25): p. 14503-08.
68. Eom, G.H., et al., Casein kinase-2α1 induces hypertrophic response by phosphorylation of histone deacetylase 2 S394 and its activation in the heart. Circulation. , 2011. 123(21): p. 2392-403.
69. Tsai, S.C. and E. Seto, Regulation of Histone Deacetylase 2 by Protein Kinase CK2. J Biol Chem., 2002. 277(35): p. 31826-33.
70. Pflum, M.K., et al., Histone deacetylase 1 phosphorylation promotes enzymatic activity and complex formation. J Biol Chem., 2001. 276(50): p. 47733-41.
71. Kelly, R.D. and S.M. Cowley, The physiological roles of histone deacetylase (HDAC) 1 and 2: complex co-stars with multiple leading parts. Biochem. Soc. Trans, 2013. 41(741-49).
72. Khan, D.H., et al., Protein kinase CK2 regulates the dimerization of histone deacetylase 1 (HDAC1) and HDAC2 during mitosis. J Biol Chem., 2013. 288(23): p. 16518-28.
73. Karwowska-Desaulniers, P., et al., Histone deacetylase 1 phosphorylation at S421 and S423 is constitutive in vivo, but dispensable in vitro. Biochem Biophys Res Commun., 2007. 361(2): p. 349-55.
74. Longworth, M.S. and L.A. Laimins, Histone deacetylase 3 localizes to the plasma membrane and is a substrate of Src. Oncogene, 2006. 25(32): p. 4495-500.
75. Guenther, M.G., O. Barak, and M.A. Lazar, The SMRT and N-CoR Corepressors Are Activating Cofactors for Histone Deacetylase 3. Mol Cell Biol., 2001. 21(18): p. 6091-101.
76. Patil, H., et al., Mitotic Activation of a Novel Histone Deacetylase 3-Linker Histone H1.3 Protein Complex by Protein Kinase CK2. J. Biol. Chem. , 2016. 291(7): p. 3158-72.
77. Zhang, X., et al., Histone deacetylase 3 (HDAC3) activity is regulated by interaction with protein serine/threonine phosphatase 4. Genes Dev. , 2005. 19(7): p. 827-39.
78. Yang, W.M., et al., Functional Domains of Histone Deacetylase-3. J. Biol. Chem. , 2002. 277(11): p. 9447-54.
79. Sun, C.H. and J.H. Tai, Identification and characterization of a ran gene promoter in the protozoan pathogen Giardia lamblia. J Biol Chem., 1999. 274(28): p. 19699-706.
80. Xiong, T.C., et al., Isolated plant nuclei as mechanical and thermal sensors involved in calcium signalling. Plant J., 2004. 40(1): p. 12-21.
81. Shechter, D., et al., Extraction, purification and analysis of histones. Nat. Protocols, 2007. 2(6): p. 1445-1457.
82. Shevchenko, A., et al., In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protocols, 2007. 1(6): p. 2856-2860.
83. Villen, J. and S.P. Gygi, The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. Nat. Protocols, 2008. 3(10): p. 1630-1638.
84. Hsu, J.L., et al., Stable-Isotope Dimethyl Labeling for Quantitative Proteomics. Analytical Chemistry, 2003. 75(24): p. 6843-6852.
85. Wiese, S., et al., Protein labeling by iTRAQ: a new tool for quantitative mass spectrometry in proteome research. Proteomics., 2007. 7(3): p. 340-50.
86. Abelin, J.G., et al., Complementary IMAC enrichment methods for HLA-associated phosphopeptide identification by mass spectrometry. Nat. Protocols, 2015. 10(9): p. 1308-1318.
87. Espeut, J., et al., Phosphorylation Relieves Autoinhibition of the Kinetochore Motor Cenp-E. Mol Cell., 2008. 29(5): p. 637-643.
88. Kim, Y., et al., CENP-E combines a slow, processive motor and a flexible coiled coil to produce an essential motile kinetochore tether. J Cell Biol. , 2008. 181(3): p. 411-9.
89. Rose, A. and I. Meier, Scaffolds, levers, rods and springs: diverse cellular functions of long coiled-coil proteins. Cell Mol Life Sci., 2004. 61(16): p. 1996-2009.
90. Singleton, M.R., M.S. Dillingham, and D.B. Wigley, Structure and mechanism of helicases and nucleic acid translocases. Annu Rev Biochem., 2007. 76: p. 23-50.
91. Donaldson, J.G. and C.L. Jackson, ARF family G proteins and their regulators: roles in membrane transport, development and disease. Nat Rev Mol Cell Biol, 2011. 12(6): p. 362-375.
92. Haberland, M., R.L. Montgomery, and E.N. Olson, The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet, 2009. 10(1): p. 32-42.
93. Ubersax, J.A. and J.E. Ferrell Jr, Mechanisms of specificity in protein phosphorylation. Nat Rev Mol Cell Biol, 2007. 8(7): p. 530-541.
94. Carrozza, M.J., et al., The diverse functions of histone acetyltransferase complexes. Trends in Genetics, 2003. 19(6): p. 321-329.
95. Clarke, A.S., et al., Esa1p is an essential histone acetyltransferase required for cell cycle progression. Mol Cell Biol., 1999. 19(4): p. 2515-26.
96. Reid, J.L., et al., Coordinate Regulation of Yeast Ribosomal Protein Genes Is Associated with Targeted Recruitment of Esa1 Histone Acetylase. Molecular Cell, 2000. 6(6): p. 1297-1307.
97. Vogelauer, M., et al., Global histone acetylation and deacetylation in yeast. Nature, 2000. 408(6811): p. 495-498.
98. Claudie Lemercier, et al., Tip60 Acetyltransferase Activity Is Controlled by Phosphorylation. J. Biol. Chem., 2003. 278(7): p. 4713-18.
99. Shin, S.H. and S.S. Kang, Phosphorylation of Tip60 Tyrosine 327 by Abl Kinase Inhibits HAT Activity through Association with FE65. Open Biochem J, 2013. 7: p. 66-72.
100. Zubác, Z. and J.H. ˇová, and Jan Tachezy, Histone H3 Variants in Trichomonas vaginalis. Eukaryot Cell, 2012. 11(5): p. 654–661.
101. Morris, S.A., et al., Identification of histone H3 lysine 36 acetylation as a highly conserved histone modification. J Biol Chem., 2007. 282(10): p. 7632-40.
102. Keogh, M.-C., et al., Cotranscriptional Set2 Methylation of Histone H3 Lysine 36 Recruits a Repressive Rpd3 Complex. Cell, 2005. 123(4): p. 593-605.
103. Matsuda, A., et al., Highly condensed chromatins are formed adjacent to subtelomeric and decondensed silent chromatin in fission yeast. Nat Commun, 2015. 6.
104. Jain, R., N. Iglesias, and D. Moazed, Distinct Functions of Argonaute Slicer in siRNA Maturation and Heterochromatin Formation. Molecular Cell.
105. Volpe, T. and R.A. Martienssen, RNA interference and heterochromatin assembly. Cold Spring Harb Perspect Biol., 2011. 3(9): p. a003731.
106. Suzuki, S., et al., Histone H3K36 trimethylation is essential for multiple silencing mechanisms in fission yeast. Nucleic Acids Research, 2016. 44(9): p. 4147-4162.
107. Pokholok, D.K., et al., Genome-wide Map of Nucleosome Acetylation and Methylation in Yeast. Cell, 2005. 122(4): p. 517-527.
108. Zhang, K., et al., Histone acetylation and deacetylation: identification of acetylation and methylation sites of HeLa histone H4 by mass spectrometry. Mol Cell Proteomics., 2002. 1(7): p. 500-8.
109. Zhang, K. and H. Tang, Analysis of core histones by liquid chromatography–mass spectrometry and peptide mapping. Journal of Chromatography B, 2003. 783(1): p. 173-179.
110. Umehara, T., et al., Structural basis for acetylated histone H4 recognition by the human BRD2 bromodomain. J Biol Chem., 2010. 285(10): p. 7610-8.
111. 李由. 陰道滴蟲Myb2及Myb3轉錄因子受鐵及過氧化氫誘導入核之調控機制. 國立台灣大學微生物學研究所寄生蟲學組碩士論文. 2011
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49792-
dc.description.abstract鐵離子目前已知可活化陰道滴蟲蛋白激酶A相關訊息傳遞路徑,造成Myb3轉錄因子快速入核後遂行其功能,研究更發現此寄生蟲在鐵離子刺激後可誘發組蛋白脫乙醯酶TvHADC1的Ser391位點磷酸化。本實驗則利用蛋白激酶抑制劑發現鐵離子刺激透過PKC及MEK相關訊號傳遞路徑調控TvHDAC1入核,但H2O2刺激則非。TvHDAC1的過量表現亦造成組蛋白H3的Lys9以及H4的Lys5、Lys8、Lys16低乙醯化,然此現象不見於TvHDAC1的S391A點突變轉殖蟲株。藉由質譜分析細胞核蛋白,除發現鐵離子刺激快速改變組蛋白乙醯化與甲基化狀態,且變化趨勢異於H2O2刺激結果,鐵離子刺激亦同時活化組蛋白乙醯轉移酶TvHAT1與TvHAT2以及另外兩個組蛋白脫乙醯酶TvHDAC2與TvHDAC3磷酸化。免疫螢光染色分析驗證陰道滴蟲受鐵離子刺激後,可快速調控組蛋白特定位點乙醯化修飾。綜合以上數據顯示,陰道滴蟲受鐵刺激後,可能藉由訊號傳遞調控組蛋白乙醯轉移酶與脫乙醯酶,改變組蛋白密碼以控制下游基因活性,快速調節細胞生理因應環境中過量鐵離子。zh_TW
dc.description.abstractIron was shown to rapidly activate protein kinase A-mediated signaling to induce nuclear influx of a Myb3 transcription factor in the protozoan parasite, Trichomonas vaginalis. Site-specific phosphorylation of a histone deacetylase (HDAC), referred to as TvHDAC1, at Ser391 was previously found right after iron repletion. Here, the underlying mechanism of nuclear import of TvHDAC1 induced by iron but not H2O2 was investigated through inhibitor assay and the results indicate that PKC and MEK-related signaling pathways were activated to induce translocation of the enzyme from the endomembrane system toward the nucleus. Overexpression of TvHDAC1 resulted in hypoacetylation of histone H3 at Lys9 and histone H4 at Lys5, Lys8, Lys16, but this effect was aborted in the dominant negative mutant S391A. Exploring nuclei purification for LC-MS/MS based proteomics analysis, iron was found to induce rapid changes of acetylation and methylation on histones in a distinct way from H2O2 stimulation, and phosphorylation of two histone acetyltransferases (HAT), referred to as TvHAT1 and TvHAT2, and two additional HDACs, referred to as TvHDAC2 and TvHDAC3. The immunofluorescence assay was employed to confirm deacetylation of histones at specific sites upon iron repletion. These observations suggest that iron rapidly orchestrates multiple histone code writers through signal transduction to fine-tune gene expression in the parasite in response to iron overloading.en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:48:41Z (GMT). No. of bitstreams: 1
ntu-105-R03445201-1.pdf: 4126169 bytes, checksum: 4fe4e4ac5bc4d9d9fb31a2887fac1a28 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員審議書 i
誌謝 ii
目錄 1
附圖目錄 3
附表目錄 4
縮寫表 5
英文摘要 7
中文摘要 8
第一章 前言 9
第一節 陰道滴蟲簡介 9
第二節 鐵離子 10
第三節 陰道滴蟲與鐵離子 12
第四節 組蛋白轉譯後修飾 12
第五節 研究目的 15
第二章 材料與方法 16
第一節 陰道滴蟲蟲株 16
第二節 免疫螢光染色 17
第三節 質譜分析樣本製備 18
第四節 蛋白質聚丙烯醯胺凝膠電泳 22
第五節 西方轉漬 22
第六節 抑制劑試驗 22
第三章 結果 23
第一節 鐵離子誘發陰道滴蟲HDAC與HAT之磷酸化 23
第二節 陰道滴蟲TvHDAC1與鐵離子關係之探討 24
第三節 鐵離子誘導組蛋白轉譯後修飾 26
第四節 TvHDAC1之功能分析 27
第四章 討論 28
第一節 鐵離子快速誘發陰道滴蟲細胞核生理調控 28
第二節 TvHDAC1細胞內流動之探討 29
第三節 TvHDACs與TvHATs磷酸化位點探討 31
第四節 陰道滴蟲受鐵或過氧化氫誘導之組蛋白轉譯後修飾 32
第五節 TvHDAC1功能性分析 34
第六節 總結 35
附圖 36
附表 61
參考資料 70
附錄 78
dc.language.isozh-TW
dc.subject組蛋白脫乙醯?zh_TW
dc.subject組蛋白zh_TW
dc.subject乙醯化zh_TW
dc.subject鐵zh_TW
dc.subject入核zh_TW
dc.subject陰道滴蟲zh_TW
dc.subjectironen
dc.subjecthistone deacetylaseen
dc.subjecthistoneen
dc.subjectTrichomonas vaginalisen
dc.subjectacetylationen
dc.title陰道滴蟲受鐵誘導之組蛋白轉譯後修飾zh_TW
dc.titleIron-Inducible Histone Modifications in
Trichomonas vaginalis
en
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許弘明(Hong-Ming Hsu),許邦弘(Pang-Hung Hsu)
dc.subject.keyword陰道滴蟲,組蛋白,組蛋白脫乙醯?,乙醯化,入核,鐵,zh_TW
dc.subject.keywordTrichomonas vaginalis,histone,histone deacetylase,acetylation,iron,en
dc.relation.page106
dc.identifier.doi10.6342/NTU201602421
dc.rights.note有償授權
dc.date.accepted2016-08-12
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept微生物學研究所zh_TW
顯示於系所單位:微生物學科所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
4.03 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved