請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49789
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 劉興華(Shing-Hwa Liu) | |
dc.contributor.author | Min-Ni Chung | en |
dc.contributor.author | 鍾旻倪 | zh_TW |
dc.date.accessioned | 2021-06-15T11:48:30Z | - |
dc.date.available | 2017-08-26 | |
dc.date.copyright | 2016-08-26 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-08-12 | |
dc.identifier.citation | 1. Hall AH. Chronic arsenic poisoning. 2002. Toxicol Lett. 128(1-3):69-72.
2. Miller WH Jr, Schipper HM, Lee JS, Singer J, Waxman S. 2002. Cancer Res. 62(14):3893-903. 3. Duker AA, Carranza EJ, Hale M. Arsenic geochemistry and health. 2005. Environ Int. 31(5):631-41. 4. IARC. Arsenic and arsenic compounds. 1980. IARC Monogr Eval Carcinog Risk Chem Hum. 23:39-141. 5. WHO. Arsenic in Drinking-water, 4th ed. Geneva: Guidelines for Drinking- Water Quality. 2011. 6. United Nations Environment Programme (UNEP). Water. 2012. Global environment outlook-5 (GEO5). 4: 97-132. 7. Sun B, Xing M. Evaluated the Twenty-Six Elements in the Pectoral Muscle of As-Treated Chicken by Inductively Coupled Plasma Mass Spectrometry. 2016. Biol Trace Elem Res. 169(2):359-64. 8. Saint-Jacques N, Parker L, Brown P, Dummer TJ. Arsenic in drinking water and urinary tract cancers: a systematic review of 30 years of epidemiological evidence. 2014. Environ Health. 13:44. 9. Shankar S, Shanker U, Shikha. Arsenic contamination of groundwater: a review of sources, prevalence, health risks, and strategies for mitigation. 2014. ScientificWorldJournal. 2014:304524. 10. WHO. Arsenic and Arsenic Compounds (Environmental Health Criteria 224), 2nd ed. Geneva: World Health Organization, International Programme on Chemical Safety. 2001. 11. Chen CJ, Wang SL, Chiou JM, Tseng CH, Chiou HY, Hsueh YM, Chen SY, Wu MM, Lai MS. Arsenic and diabetes and hypertension in human populations: a review. 2007. Toxicol Appl Pharmacol. 222(3):298-304. 12. Cohen SM, Arnold LL, Beck BD, Lewis AS, Eldan M. Evaluation of the carcinogenicity of inorganic arsenic. 2013. Crit Rev Toxicol. 43(9):711-52. 13. Sengupta SR, Das NK, Datta PK. Pathogenesis, clinical features and pathology of chronic arsenicosis. 2008. Indian J Dermatol Venereol Leprol. 74(6):559-70. 14. Huard J, Li Y, Fu FH. Muscle injuries and repair: current trends in research. 2002. J Bone Joint Surg Am. 84-A(5):822-32. 15. Hockerman GH, Dethrow NM, Hameed S, Doran M, Jaeger C, Wang WH, Pond AL. The Ubr2 Gene is Expressed in Skeletal Muscle Atrophying as a Result of Hind Limb Suspension, but not Merg1a Expression Alone. 2014. Eur J Transl Myol. 24(3):3319. 16. Goodman CA, Hornberger TA. New roles for Smad signaling and phosphatidic acid in the regulation of skeletal muscle mass. 2014. F1000Prime Rep. 6:20. 17. Jang YN, Baik EJ. JAK-STAT pathway and myogenic differentiation. 2013. JAKSTAT. 2(2):e23282. 18. Bodine SC, Baehr LM. Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. 2014. Am J Physiol Endocrinol Metab. 307(6):E469-84. 19. Rodriguez J, Vernus B, Chelh I, Cassar-Malek I, Gabillard JC, Hadj Sassi A, Seiliez I, Picard B, Bonnieu A. Myostatin and the skeletal muscle atrophy and hypertrophy signaling pathways. 2014. Cell Mol Life Sci. 71(22):4361-71. 20. Palus S, von Haehling S, Springer J. Muscle wasting: an overview of recent developments in basic research. 2014. J Cachexia Sarcopenia Muscle. 5(3):193-8. 21. Dutt V, Gupta S, Dabur R, Injeti E, Mittal A. Skeletal muscle atrophy: Potential therapeutic agents and their mechanisms of action. 2015. Pharmacol Res. 99:86-100. 22. Sandri M. Signaling in muscle atrophy and hypertrophy. 2008. Physiology (Bethesda). 23:160-70. 23. Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH, Goldberg AL. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and causeskeletal muscle atrophy. 2004. Cell. 117(3):399-412. 24. Sishi BJ, Engelbrecht AM. Tumor necrosis factor alpha (TNF-α) inactivates the PI3-kinase/PKB pathway and induces atrophy and apoptosis in L6 myotubes. 2011. Cytokine. 54(2):173-84. 25. Bonaldo P, Sandri M. Cellular and molecular mechanisms of muscle atrophy. 2013. Dis Model Mech. 6(1):25-39. 26. Sartori R, Schirwis E, Blaauw B, Bortolanza S, Zhao J, Enzo E, Stantzou A, Mouisel E, Toniolo L, Ferry A, Stricker S, Goldberg AL, Dupont S, Piccolo S, Amthor H, Sandri M. BMP signaling controls muscle mass. 2013. Nat Genet. 45(11):1309-18. 27. Piccirillo R, Demontis F, Perrimon N, Goldberg AL. Mechanisms of muscle growth and atrophy in mammals and Drosophila. 2014. Dev Dyn. 243(2):201-15. 28. Yen YP, Tsai KS, Chen YW, Huang CF, Yang RS, Liu SH. Arsenic inhibits myogenic differentiation and muscle regeneration. 2010. Environ Health Perspect. 118(7):949-56. 29. Yen YP, Tsai KS, Chen YW, Huang CF, Yang RS, Liu SH. Arsenic induces apoptosis in myoblasts through a reactive oxygen species-induced endoplasmic reticulum stress and mitochondrial dysfunction pathway. 2012. Arch Toxicol. 86(6):923-33. 30. Liu SH, Yang RS, Yen YP, Chiu CY, Tsai KS, Lan KC. Low-Concentration Arsenic Trioxide Inhibits Skeletal Myoblast Cell Proliferation via a Reactive Oxygen Species-Independent Pathway. 2015. PLoS One. 10(9):e0137907. 31. Wang X, Li D, Ghali L, Xia R, Munoz LP, Garelick H, Bell C, Wen X. Therapeutic Potential of Delivering Arsenic Trioxide into HPV-Infected Cervical Cancer Cells Using Liposomal Nanotechnology. 2016. Nanoscale Res Lett. 11(1):94. 32. Huang SY, Chang CS, Tang JL, Tien HF, Kuo TL, Huang SF, Yao YT, Chou WC, Chung CY, Wang CH, Shen MC, Chen YC. Acute and chronic arsenic poisoning associated with treatment of acute promyelocytic leukaemia. 1998. Br J Haematol. 103(4):1092-5. 33. Alimoghaddam K. A review of arsenic trioxide and acute promyelocytic leukemia. 2014. Int J Hematol Oncol Stem Cell Res. 8(3):44-54. 34. Chiu CY, Yang RS, Sheu ML, Chan DC, Yang TH, Tsai KS, Chiang CK, Liu SH. Advanced glycation end-products induce skeletal muscle atrophy and dysfunction in diabetic mice via a RAGE-mediated, AMPK-down-regulated, Akt pathway. 2016. J Pathol. 238(3):470-82. 35. MacDonald EM, Andres-Mateos E, Mejias R, Simmers JL, Mi R, Park JS, Ying S, Hoke A, Lee SJ, Cohn RD. Denervation atrophy is independent from Akt and mTOR activation and is not rescued by myostatin inhibition. 2014. Dis Model Mech. 7(4):471-81. 36. Burnes LA, Kolker SJ, Danielson JF, Walder RY, Sluka KA. Enhanced muscle fatigue occurs in male but not female ASIC3-/- mice. 2008. Am J Physiol Regul Integr Comp Physiol. 294(4):R1347-55. 37. Rodríguez VM, Jiménez-Capdeville ME, Giordano M. The effects of arsenic exposure on the nervous system. 2003. Toxicol Lett. 145(1):1-18. 38. Prakash C, Soni M, Kumar V. Mitochondrial oxidative stress and dysfunction in arsenic neurotoxicity: A review. 2016. J Appl Toxicol. 36(2):179-88. 39. Lan CC, Yu HS, Ko YC. Chronic arsenic exposure and its adverse health effects in Taiwan: a paradigm for management of a global environmental problem. 2011. Kaohsiung J Med Sci. 27(9):411-6. 40. Huang CF, Yang CY, Chan DC, Wang CC, Huang KH, Wu CC, Tsai KS, Yang RS, Liu SH. Arsenic Exposure and Glucose Intolerance/Insulin Resistance in Estrogen-Deficient Female Mice. 2015. Environ Health Perspect. 123(11):1138-44. 41. Patel HV, Kalia K. Role of hepatic and pancreatic oxidative stress in arsenic induced diabetic condition in Wistar rats. 2013. J Environ Biol. 34(2):231-6. 42. Akbal A, Yılmaz H, Tutkun E. Arsenic exposure associated with decreased bone mineralization in male. 2014. Aging Male. 17(4):256-8. 43. Liu X, Joshi S, Ravishankar B, Laron D, Kim HT, Feeley BT. Bone morphogenetic protein signaling in rotator cuff muscle atrophy and fatty infiltration. 2015. Muscles Ligaments Tendons J. 5(2):113-9. 44. Thankam FG, Dilisio MF, Agrawal DK. Immunobiological factors aggravating the fatty infiltration on tendons and muscles in rotator cuff lesions. 2016. Mol Cell Biochem. 417(1-2):17-33. 45. Chakraborti D, Mukherjee SC, Pati S, Sengupta MK, Rahman MM, Chowdhury UK, Lodh D, Chanda CR, ChakrabortiAK, Basu GK. Arsenic groundwater contamination in Middle Ganga Plain, Bihar, India: a future danger? 2003. Environ Health Perspect. 111(9):1194-201. 46. Fahey AJ, Brameld JM, Parr T, Buttery PJ. The effect of maternal undernutrition before muscle differentiation on the muscle fiber development of the newborn lamb. 2005. J Anim Sci. 83(11):2564-71. 47. Lan CC, Yu HS, Ko YC. Chronic arsenic exposure and its adverse health effects in Taiwan: a paradigm for management of a global environmental problem. 2011. Kaohsiung J Med Sci. 27(9):411-6. 48. Jones EJ, Bishop PA, Woods AK, Green JM. Cross-sectional area and muscular strength: a brief review. 2008. Sports Med. 38(12):987-94. 49. Guo Y, Meng J, Tang Y, Wang T, Wei B, Feng R, Gong B, Wang H, Ji G, Lu Z. AMP-activated kinase α2 deficiency protects mice from denervation-induced skeletal muscle atrophy. 2016. Arch Biochem Biophys. 600:56-60. 50. Jaitovich A, Angulo M, Lecuona E, Dada LA, Welch LC, Cheng Y, Gusarova G, Ceco E, Liu C, Shigemura M, Barreiro E, Patterson C, Nader GA, Sznajder JI. High CO2 levels cause skeletal muscle atrophy via AMP-activated kinase (AMPK), FoxO3a protein, and muscle-specific Ring finger protein 1 (MuRF1). 2015. J Biol Chem. 290(14):9183-94. 51. Pereira RM, Freire de Carvalho J. Glucocorticoid-induced myopathy. 2011. Joint Bone Spine. 78(1):41-4. 52. Sukari A, Muqbil I, Mohammad RM, Philip PA, Azmi AS. F-BOX proteins in cancer cachexia and muscle wasting: Emerging regulators and therapeutic opportunities. 2016. Semin Cancer Biol. 36:95-104. 53. Fukawa T, Yan-Jiang BC, Min-Wen JC, Jun-Hao ET, Huang D, Qian CN, Ong P, Li Z, Chen S, Mak SY, Lim WJ, Kanayama HO, Mohan RE, Wang RR, Lai JH, Chua C, Ong HS, Tan KK, Ho YS, Tan IB, Teh BT, Shyh-Chang N. Excessive fatty acid oxidation induces muscle atrophy in cancer cachexia. 2016. Nat Med. 22(6):666-71. 54. Mu X, Agarwal R, March D, Rothenberg A, Voigt C, Tebbets J, Huard J, Weiss K. Notch Signaling Mediates Skeletal Muscle Atrophy in Cancer Cachexia Caused by Osteosarcoma. 2016. Sarcoma. 2016:3758162. 55. Aoyama S, Jia H, Nakazawa K, Yamamura J, Saito K, Kato H. Dietary Genistein Prevents Denervation-Induced Muscle Atrophy in Male Rodents via Effects on Estrogen Receptor-α. 2016. J Nutr. 146(6):1147-54. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49789 | - |
dc.description.abstract | 砷 (arsenic, As)為自然界中廣泛存在之有毒類金屬,並且為國際癌症研究署 (International Agency for Research on Cancer, IARC)所認定之一級致癌物質,其中又以無機三價砷化合物:三氧化二砷 (arsenic trioxide, As2O3)最具代表性並被廣為研究。已知長期飲用含無機砷化物之地下水易造成烏腳病、皮膚癌與肺癌等多種病症,另外,也觀察到新生兒體重減輕與肌肉組成減縮的現象。臨床研究發現三氧化二砷可用於治療急性前骨髓細胞白血病 (acute promyelocytic leukaemia, APL),但持續使用此療法卻會產生多發性神經病變、肌肉萎縮 (muscle atrophy)等不良影響。以上文獻皆顯示出三氧化二砷具有肌肉毒性,且近來的研究亦指出三氧化二砷會抑制肌肉分化 (myogenic differentiation)與肌肉再生 (muscle regeneration)作用,故本實驗欲以動物及細胞模式探討三氧化二砷是否造成肌肉萎縮及其分子機制。本實驗使用剔除坐骨神經之ICR小鼠進行實驗,並餵予0.05或0.5 ppm之三氧化二砷飲水達四週進行肌肉功能之探討,以去除神經源性肌萎縮之影響。首先,以滾輪測試儀 (rota-rod)測試小鼠之肌肉耐受力,實驗結果發現去神經合併餵食砷飲水之小鼠停留於滾輪上的時間顯著地縮短,此外,其下肢肌肉(比目魚肌 (soleus muscle)、脛前肌 (tibialis anterior muscle)、腓腸肌 (gastrocnemius muscle))的重量與肌纖維束大小皆顯著地下降,並藉由免疫組織化學染色法 (immunohistochemistry, IHC)觀察到Atrogin-1與Noggin的大量表現。另外,本實驗亦利用C2C12肌小管細胞 (C2C12 myotube)處理0.25-1 μM三氧化二砷達48小時,以探討其誘發肌肉萎縮之分子機制。實驗結果證實肌肉萎縮指標蛋白 (Atrogin-1、MuRF1)的表現皆明顯被砷所誘發,並以蘇木素-伊紅染色 (hematoxylin and eosin stain, H&E stain)發現肌小管直徑顯著地減縮,且其訊號上游之FoxO1、FoxO3a、Akt磷酸化蛋白表現皆受三氧化二砷抑制。此外,亦發現三氧化二砷所誘發之肌肉萎縮是經由抑制骨塑型蛋白 (bone morphogenetic protein, BMP)訊號途徑 (BMP2、BMP7、BMPR1A、BMPR2、p-Smad1/5/9 and Smad4)而使Akt磷酸化蛋白下降所導致。除此之外,免疫沉澱法分析 (immunoprecipitation, IP)顯示三氧化二砷藉由干擾磷酸化Smad1/5/9和Smad4的結合,並促進BMP2和Noggin結合達到抑制BMP訊號傳導的結果。最後,實驗發現處理Akt活化劑可明顯抑制三氧化二砷造成之肌小管萎縮。綜合上述,本實驗證實三氧化二砷為誘發肌肉萎縮之危險因子,並可藉由抑制BMP/p-Smad1/5/9/Akt此訊號傳遞途徑誘發Atrogin-1、MuRF1的表現,最終導致肌肉萎縮。 | zh_TW |
dc.description.abstract | Arsenic (As) is a widely distributed poisonous metalloid in the environment and is classified as a Class I carcinogen by International Agency for Research on Cancer (IARC). Arsenic trioxide (As2O3), one of the most toxic forms of inorganic As, is most representative and well studied. Chronic exposure to groundwater containing inorganic As is known to cause black foot disease, cancers and many diseases. Besides, As also has been found to be associated with the low-birth-weight infants and the impairment of muscle regenerative capacity in areas with high levels of As in drinking water. Clinically, Arsenic trioxide (As2O3) is used as an effective salvage therapy for acute promyelocytic leukemia (APL), but it has some side-effects, such as polyneuropathy and distal muscular atrophy. All of these studies indicate that As2O3 has muscle toxicity. Recent studies also have found that As2O3 inhibits myogenic differentiation and muscle regeneration. Therefore, the aim of the present study is to investigate the action and molecular mechanism of As2O3 on muscle atrophy in vivo and in vitro. In this study, we used a sciatic nerve denervation model to avoid the neural interference caused by As2O3. And the mice were exposed to drinking water containing 0.05 or 0.5 ppm As2O3 for 4 weeks. First, we tested the muscle endurance by rota-rod, and the results showed that combined denervation and As2O3 exposure significantly shorten the time on the rota-rod and caused muscle fatigue. Besides, the muscle weighs of the lower limb (soleus, tibialis anterior and gastrocnemius muscles) as well as the cross-sectional area of these muscles were significantly decreased. Also, As2O3 induced the expression of Atrogin-1 and Noggin in muscle tissues by immunohistochemistry (IHC). On the other hand, to investigate the action and molecular mechanism of As2O3 on muscle atrophy induction, we treated C2C12 myotubes with As2O3 (0.25-1 μM) for 48 hours. The protein expressions of atrogenes (Atrogin-1, MuRF1) were significantly induced by As2O3. As2O3 notably reduced the myotube diameters by hematoxylin and eosin stain (H&E stain). And the upstream proteins of atrogenes (p-FoxO1, p-FoxO3a, p-Akt) were also inhibited by As2O3. Furthermore, As2O3 decreased the bone morphogenetic protein (BMP) signaling pathway (BMP2, BMP7, BMPR1A, BMPR2, p-Smad1/5/9 and Smad4) to inhibit the expression of phosphorylated Akt. Using immunoprecipitation (IP), As2O3 interfered with protein interaction between p-Smad1/5/9 and Smad4, and promote the binding between BMP2 and Noggin. Finally, we found that Akt activator can reverse the As2O3 induced muscle atrophy. Taken together, these results suggested that As2O3 is a potential risk factor for skeletal muscle atrophy and dysfunction and the putative mechanism of As2O3 induced muscle atrophy is through BMP/p-Smad1/5/9/Akt signaling pathway. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T11:48:30Z (GMT). No. of bitstreams: 1 ntu-105-R03447001-1.pdf: 3920929 bytes, checksum: d92b419f13c643e0eb52218bbdef8758 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iv Abstract vi Abbreviation Summary viii Part 1: Introduction 1 1.1 Sources and exposure routes of arsenic 1 1.2 Metabolism of arsenic 3 1.3 Muscle structure and functions 4 1.4 Muscle atrophy 5 1.5 Arsenic trioxide (As2O3) and skeletal muscle 8 Part 2: Aims 9 Part 3: Materials and Methods 10 3.1 Animals 10 3.2 Muscle denervation model 10 3.3 Muscle fatigue task 11 3.4 Fasting plasma glucose (FPG) test 11 3.5 Histological assessments 11 3.6 Cell culture 12 3.7 Preparation of As2O3 12 3.8 Myogenic differentiation and differentiated myotube treatment with As2O3 12 3.9 Compound C and SC79 treatment 13 3.11 Immunoprecipitation (IP) analysis 14 3.12 Morphological myotube analysis 14 3.13 Statistics 15 Part 4: Results 16 4.1 Effects of As2O3 on the body weight, fasting plasma glucose and organ weights in sciatic-denervated mice. 16 4.2 As2O3 promotes muscle atrophy and weakness in vivo. 16 4.3 As2O3 induces muscle atrophy in C2C12 myotubes. 18 4.4 As2O3 inhibits phosphorylation of Akt through the BMP signaling pathway. 19 4.5 Reversible effects of As2O3 on myotube atrophy. 20 Part 5: Discussion 21 Part 6: Conclusion 25 Part 7: Figures and figure legends 26 Figure 1. Effects of As2O3 on the body weight, level of fasting plasma glucose and food consumption in mice. 26 Figure 2. Effects of As2O3 on the weights of liver, pancreas and bone in mice. 27 Figure 3. Effects of As2O3 on the weights of soleus muscles, tibialis anterior (TA) muscles and gastrocnemius (GAS) muscles in mice. 28 Figure 4. Effects of As2O3 on the weight of muscles compared to the contralateral control in mice. 29 Figure 5. Effects of As2O3 on muscular dysfunction in vivo. 30 Figure 6. Effects of As2O3 on muscle fiber cross-sectional area (CSA) in vivo. 32 Figure 7. The immunohistochemical changes of Atrogin1 and Noggin expressions in soleus muscles of mice with As2O3 exposure or denervation treatment. 34 Figure 8. The immunohistochemical changes of Atrogin1 and Noggin expressions in tibialis anterior (TA) muscles of mice with As2O3 exposure or denervation treatment. 36 Figure 9. The immunohistochemical changes of Atrogin1 and Noggin expressions in gastrocnemius (GAS) muscles of mice with As2O3 exposure or denervation treatment. 38 Figure 10. Effects of As2O3 on the protein expressions of Atrogin-1 and MuRF1 in C2C12 myotubes for 24 and 48 hours. 39 Figure 11. Effects of As2O3 on protein expressions of atrophy-related proteins in C2C12 myotubes for 24 hours. 40 Figure 12. Effects of As2O3 on protein expressions of atrophy-related proteins in C2C12 myotubes for 48 hours. 41 Figure 13. As2O3 induces myotube atrophy in vitro. 42 Figure 14. Effects of As2O3 on the expression of signaling molecules in response to muscle atrophy in vitro. 43 Figure 15. Effects of As2O3 on the expressions of p-Smad1/5/9, p-Smad2/3 and Smad4 in response to myotube atrophy in vitro. 44 Figure 16. Effects of As2O3 on the expressions of BMP signaling molecules and Noggin in response to myotube atrophy in vitro. 45 Figure 17. Effects of As2O3 on the protein interactions of BMP signaling transduction and BMP receptors activation in responsible to myotube atrophy in vitro. 46 Figure 18. Effects of SC79 (an Akt activator) on the signaling molecules in response to As2O3-induced myotube atrophy in vitro. 47 Figure 19. Reversible effects of As2O3 induce myotube atrophy in vitro. 48 Figure 20. Effects of Compound C (an AMPK inhibitor) on the signaling molecules in response to As2O3-induced myotube atrophy in vitro. 49 Figure 21. Schematic diagram of the signaling pathways involved in As2O3-induced muscle atrophy. 50 Part 8: References 51 | |
dc.language.iso | en | |
dc.title | 砷誘發肌肉萎縮之作用及分子機制探討 | zh_TW |
dc.title | The action and molecular mechanism of arsenic on muscle atrophy induction | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 姜至剛(Chih-Kang Chiang),楊榮森(Rong-Sen Yang),許美鈴(Meei-Ling Sheu) | |
dc.subject.keyword | 三氧化二砷,骨骼肌,肌肉萎縮,肌小管,骨塑型蛋白, | zh_TW |
dc.subject.keyword | arsenic trioxide,skeletal muscle,muscle atrophy,myotubes,bone morphogenetic protein, | en |
dc.relation.page | 57 | |
dc.identifier.doi | 10.6342/NTU201602448 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-08-12 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 毒理學研究所 | zh_TW |
顯示於系所單位: | 毒理學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 3.83 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。