請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49786
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張培仁 | |
dc.contributor.author | Ye-Ting Tsau | en |
dc.contributor.author | 曹葉廷 | zh_TW |
dc.date.accessioned | 2021-06-15T11:48:19Z | - |
dc.date.available | 2016-08-24 | |
dc.date.copyright | 2016-08-24 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-08-12 | |
dc.identifier.citation | [1] P. Kollsman, “Apparatus for Measuring Weight Flow of Fluids,” U.S. Patent, 2602330, July 1952.
[2] Y. T. Li and S. Y. Lee, “A Fast-Response True-Mass-Rate Flowmeter,’’ Journal of Basic Engineering, Vol. 75, pp. 835–841, July 1953. [3] J. M. Pearson, “Flowmeter,” U.S. Patent, 2624198 A, January 1952. [4] L. F. Adams, W. G. Goodrich, and C. W. Wiley, “Oscillating Mass Flowmeter,” U.S. Patent, US3080750 A, March 1963. [5] “New Flowmeters Put Squeeze on Orifice Plate,” Chemical & Engineering News, Vol. 55, No. 51, pp. 20–21, December 1977. [6] J. E. Smith, “Method and Structure for Flow Measurement,” U.S. Patent, US4187721 A, February 1980. [7] N. M. Keita, “Contribution to the Understanding of the Zero Shift Effects in Coriolis Mass Flowmeters,” Flow Measurement and Instrumentation, Vol. 1, pp. 39–43, October 1989. [8] H. Raszillier and F. Durst, “Coriolis-Effect in Mass Flow Metering,” Archive of Applied Mechanics, Vol. 61, No. 3, pp. 192–214, March 1991. [9] G. Sultan, “Single Straight-Tube Coriolis Mass Flowmeter,” Flow Measurement and Instrumentation, Vol. 3, pp. 241–246, October 1992. [10] R. Cheesewright and C. Clark, “The Effect of Flow Pulsations on Coriolis Mass Flow Meters,” Journal of Fluids and Structures, Vol. 12, pp. 1025–1039, November 1998. [11] A. Belhadj, R. Cheesewright, and C. Clark, “The Simulation of Coriolis Meter Respones to Pulsation Flow Using a General Purpose F. E. Code,” Journal of Fluids and Structures, Vol. 14, pp. 613–634, July 2000. [12] J. Kutin and I. Bajsić, “Stability-Boundary Effect in Coriolis Meters,” Flow Measurement and Instrumentation, Vol. 12, pp. 65–73, March 2001. [13] J. Kutin and I. Bajsić, “An Analytical Estimation of the Coriolis Meter’s Characteristics Based on Modal Superposition,” Flow Measurement and Instrumentation, Vol. 12, pp. 345–351, January 2002. [14] G. Bobovnik, J. Kutin, and I. Bajsić, “The Effect of Flow Conditions on the Sensitivity of the Coriolis Flowmeter,” Flow Measurement and Instrumentation, Vol. 15, pp. 69–76, April 2004. [15] T. Wang and R. C. Baker, “Manufacturing Variation of the Measuring Tube in a Coriolis Flowmeter,” IEE- Science Measurement and Technology, Vol. 151, pp. 201–204, May 2004. [16] N. Mole, G. Bobovnik, J. Kutin, B. Štok, and I. Bajsić, “An Improved Three-Dimensional Coupled Fluid–Structure Model for Coriolis Flowmeters,” Journal of Fluids and Structures, Vol. 24, pp. 559–575, May 2008. [17] D. Zheng, S. Wang, and S. Fan, “Nonlinear Vibration Characteristics of Coriolis Mass Flowmeter,” Chinese Journal of Aeronautics, Vol. 22, pp. 198–205, April 2009. [18] J. J. Thomsen and J. Dahl, “Analytical Predictions for Vibration Phase Shifts Along Fluid-Conveying Pipes Due to Coriolis Forces and Imperfections,” Journal of Sound and Vibration, Vol. 329, pp. 3065–3081, July 2010. [19] M. H. Ghayesh, M. Amabili, and M. P. Païdoussis, “Thermo-Mechanical Phase-Shift Determination in Coriolis Mass-Flowmeters with Added Masses,” Journal of Fluids and Structures, Vol. 34, pp. 1–13, July 2012. [20] I. Kazakis, “Mass Flow Meter,” U.S. Patent, US5287754 A, February 1994. [21] T. Wang and R. Baker, “Coriolis Flowmeters: A Review of Developments over the Past 20 Years, and an Assessment of the State of the Art and Likely Future Directions,” Flow Measurement and Instrumentation, Vol. 40, pp. 99–123, December 2014. [22] http://www.azom.com/article.aspx?ArticleID=1728 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49786 | - |
dc.description.abstract | 本論文主要的目標在於合理的假設條件下,建立一個較為簡單的數學模型,透過此模型來探討單直管CMF的運作行為,並且探討各種設計參數對於單直管CMF運作中的影響。除此之外,針對感測器以及微調質量等質量塊的安裝位置找出最佳位置點,並使用相關研究成果協助產業開發單直管CMF的產品。首先,本論文提出針對單直管CMF的振動行為數學模型,再透過MATLAB作進一步的驗證,計算出單直管CMF的自然振動頻率以及振動行為,同時也可以得到每種不同的單直管CMF的量測靈敏度以及量測時間差。此外,本論文亦提出使用最佳化方法計算出感測器以及微調質量的最佳安裝位置。最後,本論文也針對各種設計參數作討論,找出在設計過程中,最主要影響單直管CMF量測表現的影響因子,有助於產業開發設計單直管CMF時可以作為參考。
最後,透過ANSYS模擬來驗證理論計算的結果,使用流固耦合的模型進行計算,成功計算並驗證各種不同模型的自然振動頻率、量測時間差以及質量流量等性能指標。以自然振動頻率為例,兩種不同的設計模型與理論的計算結果誤差仍在3 %以內。然而,在量測時間差的誤差相較於自然振動頻率的結果稍大一些,但是在趨勢上仍與理論非常吻合,模擬結果仍可以做為未來結果比較參考的依據。 | zh_TW |
dc.description.abstract | In this research, we constructed a simple mathematical modal to describe the operation of single tube Coriolis mass flowmeter (CMF) with the suitable conditions and discuss some related issues including looking for the optimal positions of sensors, adjust mass and the dominant design factors of single tube CMF. These contribution would assist the cooperator to develop the related products.
First of all, we utilized modal expansion method to solve the equation of motion for single tube CMF and verify our mathematical modal by MATLAB algorithms. Secondly, we could obtain natural frequency and displacement of vibrating tube from our mathematical modal. After that sensitivity of single tube CMF and measure time difference could be calculated. Thirdly, global optimization was applied for the sensor position, adjust mass position so that we could get the maximum sensitivity. Furthermore, the dominant design factors were found out that would help for constructing our own experimental facility in the future. Finally, in order to compare the results between ANSYS and MATLAB, we set up a fluid structure interaction simulation model, calculate the natural frequency and measure time difference successfully. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T11:48:19Z (GMT). No. of bitstreams: 1 ntu-105-R03543025-1.pdf: 3194226 bytes, checksum: 8fc4ad39b70b7c534a43a458fd332c6a (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 摘要 i
Abstract ii 目 錄 iii 表目錄 v 圖目錄 vi 命名 (Nomenclature) viii Chapter 1. 簡介 1 1.1. 研究動機 1 1.2. 相關研究 2 1.3. 論文架構 7 1.4. 主要貢獻 9 Chapter 2. 背景知識 10 2.1. 操作原理 10 2.2. CMF歷年發展 12 2.2.1. U型管CMF 12 2.2.2. Ω型管CMF 13 2.2.3. S型管CMF 13 2.2.4. B型管CMF 14 2.2.5. 直管CMF 15 Chapter 3. 單直管CMF之運動方程式 19 3.1. 運動方程式 (EOM) 19 3.2. 自然頻率 19 3.3. 無流速下的強制振動 22 3.4. 有流速下的強制振動 24 3.5. 感測點量測之時間差 27 3.6. 外加質量效應 28 3.7. 小結 31 Chapter 4. 單直管CMF之MATLAB模擬結果 32 4.1. 自然振動 33 4.2. 無流速下的響應頻率反應 34 4.3. 有流速下的響應頻率反應 36 4.4. 增加調整質量的影響 38 4.4.1. 感測器以及微整質量的安裝位置最佳化 39 4.4.2. 調整質量的質量變化 43 4.4.3. 安裝誤差影響 45 4.5. 小結 52 Chapter 5. 單直管CMF之ANSYS模擬結果 53 5.1. 邊界條件設定 53 5.2. 結構模態分析 55 5.3. 無流速下結構響應頻率分析 56 5.4. 有流速下結構響應頻率分析 59 5.5. 量測時間差比較 61 5.6. 小結 63 Chapter 6. 結論與未來展望 65 6.1. 結論 65 6.2. 未來展望 67 References 68 | |
dc.language.iso | zh-TW | |
dc.title | 單直管科氏質量流量計之理論建構與模擬 | zh_TW |
dc.title | Modeling and Simulation of Single Straight-Tube Coriolis
Mass Flowmeter | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 胡毓忠,施文彬,黃榮堂,戴慶良 | |
dc.subject.keyword | 科氏質量流量計,量測點最佳化,流固耦合模擬,模態展開, | zh_TW |
dc.subject.keyword | Coriolis Mass Flowmeter,Optimal Position of Sensor,Fluid Structure Interaction,Modal Expansion Method, | en |
dc.relation.page | 69 | |
dc.identifier.doi | 10.6342/NTU201601524 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-08-12 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 應用力學研究所 | zh_TW |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 3.12 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。