請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49785完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林欽塘(Chin-Tarng Lin) | |
| dc.contributor.author | Ya-Chun Chang | en |
| dc.contributor.author | 張雅淳 | zh_TW |
| dc.date.accessioned | 2021-06-15T11:48:15Z | - |
| dc.date.available | 2019-08-26 | |
| dc.date.copyright | 2016-08-26 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-12 | |
| dc.identifier.citation | Andrea F, Xiaohui P, Ian S, Klara B, Andrea B, Wang, Phyllis A, Blake G, Priti L, Lin Z and George C (2011). Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T reg cells. Nature 475(7355): 226-30
Bertus E et al (2006). Epithelial Inflammation Is Associated with CCL28 Production and the Recruitment of Regulatory T Cells Expressing CCR10. J Immunol 177: 593-603 Buell P (1974) The effect of migration on the risk of nasopharyngeal cancer among Chinese. Cancer res 34(5):1189–1191 Cao Y, Miao XP, Huang MY, Deng L, Hu LF, Ernberg I, Zeng YX, Lin DX, Shao JY (2006). Polymorphisms of XRCC1 genes and risk of nasopharyngeal carcinoma in the Cantonese population. BMC Cancer 166:167 Chan AT, Teo PM, Johnson PJ (2002) Nasopharyngeal carcinoma. Ann Oncol 13(7):1007–1015 Chang ET1, Adami HO. 2006 . The enigmatic epidemiology of nasopharyngeal carcinoma.Cancer Epidemiol Biomarkers Prev. 15(10):1765-77. Chang KP, Wu CC, Chen HC, Chen SJ, Peng PH, Tsang NM., Lee LY., Liu SC, Liang Y, Lee YS, Hao SP., Chang YS and Yu JS (2010). Identification of candidate nasopharyngeal carcinoma serum biomarkers by cancer cell secretome and tissue transcriptome analysis: Potential usage of cystatin A for predicting nodal stage and poor prognosis. PROTEOMICS 10: 2644–2660 Cheriyath, V., Glaser, K. B., Waring, J. F., Baz, R., Hussein, M. A., Borden, E. C. G1P3, an IFN-induced survival factor, antagonizes TRAIL-induced apoptosis in human myeloma cells. J. Clin. Invest. 117: 3107-3117, 2007 Cheriyath, V., Kuhns, M., Jacobs, B., Evangelista, P., Downs-Kelly, E., Tubbs, R., Crowe, J., and Borden, E.C. G1P3, an interferon- and estrogen-induced survival protein contributes to hyperplasia, tamoxifen resistance and poor outcomes in breast cancer. Oncogene. 2011. Epub 2011/10/15. doi: 10.1038/onc.2011.393. PubMed PMID: 21996729.Primary Corresponding author Cheriyath, V., Leaman, D.G. and Borden, E.C. Emerging Roles of FAM14 Family Members (ISG 6-16 and ISG 12) in Innate Immunity and Cancer. J. Interferon and. Cyto. Res., 2011, 31:173-81.Primary and Corresponding author Cheriyath V1, Kuhns MA, Jacobs BS, Evangelista P, Elson P, Downs-Kelly E, Tubbs R, Borden EC. G1P3, an interferon- and estrogen-induced survival protein contributes to hyperplasia, tamoxifen resistance and poor outcomes in breast cancer. Oncogene. 2012 Apr 26;31(17):2222-36 Chou J, Lin YC, Kim J, et al (2008) Nasopharyngeal carcinoma– review of the molecular mechanisms of tumorigenesis.Head Neck 30(7):946–963 Chow L, Lam C, Chan SY, Tsao SW, To KF, Tong SF, Hung WK, Dammann R, Huang DP, Lo KW (2006). Identification of RASSF1A modulated genes in nasopharyngeal carcinoma. Oncogene 25(2): 310-316 Clauss, I. M., Wathelet, M. G., Szpirer, J., Content, J., Islam, M. Q., Levan, G., Szpirer, C., Huez, G. A. Chromosomal localization of two human genes inducible by interferons, double-stranded RNA, and viruses. Cytogenet. Cell Genet. 53: 166-168, 1990 Cohen JI (2000) Epstein–Barr virus infection. N Engl J Med 343(7):481–492 Daniel J. Catron and Albert Zlotnik (2001). CCL28.Cytokine Reference Chapter posted 5 Deng L, Zhao XR, Pan KF, Wang Y, Deng XY, Lu YY, Cao Y (2002). Cyclin D1 Polymorphism and the Susceptibility to NPC Using DHPLC. ACTA BIOCHIMICA et BIOPHYSICA SINICA 34(1): 16-20 Eleonora C et al (2007). The Mucosae-Associated Epithelial Chemokine (MEC/CCL28) Modulates Immunity in HIV Infection. PLoS 2(10): 969 Friedman RL, Manly SP, McMahon M, Kerr IM, Stark GR. Transcriptional and posttranscriptional regulation of interferon-induced gene expression in human cells. Cell. 1984 Oct;38(3):745-55 Gullo C, Low WK, Teoh G (2008) Association of Epstein–Barr virus with nasopharyngeal carcinoma and current status of development of cancer-derived cell lines. Ann Acad Med Singapore 37(9):769–777 Hepeng J (2008) Zeng Yi profi le. A controversial bid to thwart the ‘Cantonese cancer’. Science 321(5893):1154–1155 Hieshima K, Ohtani H, Shibano M, Izawa D, Nakayama T, Kawasaki Y, Shiba F, Shiota M, Katou F, Saito T, Yoshie O (2003). CCL28 has dual roles in mucosal immunity as a chemokine with broad-spectrum antimicrobial activity. J. Immunol 170: 1452–1461 Hildesheim A, Anderson LM, Chen CJ, et al (1997) CYP2E1 genetic polymorphisms and risk of nasopharyngeal carcinoma in Taiwan. J Natl Cancer Inst 89(16):1207–1212 Hitoshi H, Takashi N, Hajime M, Sumio T, Kunio H, Yoichi T, Akihisa K, and Osamu Y (2004). Expression of CCL28 by Reed-Sternberg Cells Defines a Major Subtype of Classical Hodgkin’s Disease with Frequent Infiltration of Eosinophils and/or Plasma Cells. American Journal of Pathology 164(3): 997-1006 Huang DY, Lin YT, Jan PS, Hwang YC, Liang ST, Peng Y, Huang CFY, Wu HC and Lin CT (2008). Transcription factor SOX-5 enhances nasopharyngeal carcinoma progression by down-regulating SPARC gene expression. Journal of Pathology J Pathol 214: 445–455 Hwang YC, Lu TY, Huang DY, Kuo YS, Kao CF, Yeh NH, Wu HC and Lin CT (2009). NOLC1, an enhancer of nasopharyngeal carcinoma progression, is essential for TP53 to regulate MDM2 expression. Am. J.Pathol 175: 342-354 Karen M, Scanlon et al (2011). IL-17A Induces CCL28, Supporting the Chemotaxis of IgE-Secreting B Cells. Int Arch Allergy Immunol 156: 51–61 Kuang-rong Wei1 , Ying Xu2 , Jing Liu1 , Wen-jun Zhang2 , Zhi-heng Liang1 . 2011.Histopathological Classification of Nasopharyngeal Carcinoma. Asian Pacific Journal of Cancer Prevention, 1141-1147 Parkin DM, Muir CS (1992) Cancer incidence in five continents. Comparability and quality of data. IARC sci publ (120):45–173 Lazarus NH, Kunkel EJ, Johnston B, Wilson E, Youngman KR, and Butcher EC (2003). A common mucosal chemokine (mucosae-associated epithelial chemokine/CCL28) selectively attracts IgA plasmablasts. J Immunol 170(7): 3799-3805 Li Z, Zong YS. Review of the histological classification of nasopharyngeal carcinoma. J Nasopharyng Carcinoma, 2014, 1(15): e15. doi:10.15383 Lin CT, Chan WY, Chen W, et al (1993) Characterization of seven newly established nasopharyngeal carcinoma cell lines. Lab invest 68(6):716–727 Lin JC1, Wang WY, Chen KY, Wei YH, Liang WM, Jan JS, Jiang RS.(2004). Quantification of plasma Epstein-Barr virus DNA in patients with advanced nasopharyngeal carcinoma. N Engl J Med. 2004 Jun 10;350(24):2461-70 Liu H, Zhang, Niu Z, Zhou M, Peng C and Li X et al (2008). Promoter methylation inhibits BRD7 expression in human nasopharyngeal carcinoma cells, BMC Cancer 8: 253 Liu B, Wilson E (2010). The antimicrobial activity of CCL28 is dependent on C-terminal positively-charged amino acids. Eur. J. Immunol 40: 186–196 Lin YC, You L, Xu Z, He B, Mikami I, Thung E et al (2006). Wnt signaling activation and WIF-1 silencing in nasopharyngeal cancer cell lines. Biochem Biophys Res Commun 341: 635–640 Lo AK, Huang DP, Lo KW, et al (2004) Phenotypic alterations induced by the Hong Kong-prevalent Epstein–Barr virusencoded LMP1 variant (2117-LMP1) in nasopharyngeal epithelial cells. Int J Cancer 109(6):919–925 Lo YM, Chan LY, Lo KW, Leung SF, Zhang J, Chan AT, et al. Quantitative analysis of cell-free Epstein-Barr virus DNA in plasma of patients with nasopharyngeal carcinoma. Cancer Res 1999;59:1188–91. Lo YM, Leung SF, Chan LY, Chan AT, Lo KW, Johnson PJ, et al. Kinetics of plasma Epstein-Barr virus DNA during radiation therapy for nasopharyngeal carcinoma. Cancer Res 2000;60:2351–5 Lung HL, Cheung AK, Xie D, Cheng Y, Kwong FM, Murakami Y, Guan XY, Sham JS, Chua D, Protopopov AI, Zabarovsky ER, Tsao SW, Stanbridge EJ, Lung ML (2006). TSLC1 is a tumor suppressor gene associated with metastasis in nasopharyngeal carcinoma. Cancer Res. 66(19): 9385-9392 Marks JE, Phillips JL, Menck HR (1998) The National Cancer Data Base report on the relationship of race and national origin to the histology of nasopharyngeal carcinoma. Cancer 83(3):582–588 Pathmanathan R, Prasad U, Sadler R, et al (1995) Clonal proliferations of cells infected with Epstein–Barr virus in preinvasive lesions related to nasopharyngeal carcinoma. N Engl J Med 333(11):693–698 Patrik Sundstroぴm et al (2008). Human IgA-secreting cells induced by intestinal, but not systemic, immunization respond to CCL25 (TECK) and CCL28 (MEC). Eur. J. Immunol. 38: 3327–3338 Pingping J, Jing L, Yijun H, Dong L, Guangshui J (2012). Enhancing CCL28 expression through the gene transfer to salivary glands for controlling cariogenic microbe. Cytokine 59(1): 94-99 Porter AC1, Chernajovsky Y, Dale TC, Gilbert CS, Stark GR, Kerr IM. Interferon response element of the human gene 6-16. EMBO J. 1988 Jan;7(1):85-92. Qi Y, Li Y, Zhang Y, Zhang L, Wang Z, Zhang X, et al. (2015) IFI6 Inhibits Apoptosis via Mitochondrial-Dependent Pathway in Dengue Virus 2 Infected Vascular Endothelial Cells. PLoS ONE 10(8): e0132743 Royal Manchester . 2006 . Nasopharyngeal carcinoma. Orphanet J Rare Dis. 10.1186/1750-1172-1-23 Song LB, Li J, Liao WT et al (2009). The polycomb group protein Bmi-1 represses the tumor suppressor PTEN and induces epithelial-mesenchymal transition in human nasopharyngeal epithelial cells. J. Clin. Invest. 119: 3626–3636 Szegedi K1, Sonkoly E, Nagy N, Németh IB, Bata-Csörgo Z, Kemény L, Dobozy A, Széll M. The anti-apoptotic protein G1P3 is overexpressed in psoriasis and regulated by the non-coding RNA, PRINS.Exp Dermatol. 2010 Mar;19(3):269-78 Tahara E Jr1, Tahara H, Kanno M, Naka K, Takeda Y, Matsuzaki T, Yamazaki R, Ishihara H, Yasui W, Barrett JC, Ide T, Tahara E. G1P3, an interferon inducible gene 6-16, is expressed in gastric cancers and inhibits mitochondrial-mediated apoptosis in gastric cancer cell line TMK-1 cell. Cancer Immunol Immunother. 2005 Aug;54(8):729-40 Turri MG1, Cuin KA, Porter AC. Characterisation of a novel minisatellite that provides multiple splice donor sites in an interferon-induced transcript.Nucleic Acids Res. 1995 Jun 11;23(11):1854-61. Vasef MA, Ferlito A, Weiss LM (1997) Nasopharyngeal carcinoma, with emphasis on its relationship to Epstein–Barr virus. Ann Otol Rhinol Laryngol 106(4):348–356 Wang W, Soto H, Oldham ER, Buchanan ME, Homey B, Catron D, et al (2000). Identification of a novel chemokine (CCL28), which binds CCR10 (GPR2). J Biol Chem 275: 22313–22323 Wang GL, Lo KW, Tsang KS, Chung NYF, Tsang YS, Cheung ST, Lee JCK and Huang DP (1999). Inhibiting tumorigenic potential by restoration of p16 in nasopharyngeal carcinoma. British Journal of Cancer 81(7): 1122–1126 Wolf H., zur Hausen H., Becker V. (1973). EB viral genomes in epithelial nasopharyngeal carcinoma cells. Nat. New Biol. 244, 245–247. 10.1038/newbio244245 Xiang Y, Yao H, Wang S, Hong M, He J, Cao S, Min H, Song E and Guo X (2006). Prognostic Value of Survivin and Livin in Nasopharyngeal Carcinoma. The Laryngoscope 116: 126–130 Yu MC, Yuan JM (2002) Epidemiology of nasopharyngeal carcinoma. Semin Cancer Biol 12(6):421–429 Zhou L, Jiang W, Ren C, Yin Z, Feng X, Liu W, Tao Q, Yao K (2005). Frequent hypermethylation of RASSF1A and TSLC1, and high viral load of Epstein-Barr Virus DNA in nasopharyngeal carcinoma and matched tumor-adjacent tissues. Neoplasia 9: 809-815 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49785 | - |
| dc.description.abstract | 鼻咽癌是種好發於鼻咽部的癌症 ,其發生的族群以東南亞國家為主例如:香港、新加坡、及中國沿海地區(廣東、福建),此外非洲的人民也不少人得此病,世界衛生組織將鼻咽癌分為三類,第一類為:未分化的鱗狀上皮細胞癌、第二類為:非角質化細胞癌、第三類為:未分化細胞癌,鼻咽癌的致癌因素包括:病毒感染、飲食習慣、遺傳、環境..等。而其中最為大家所耳熟能詳的是EBV病毒感染,研究雖然顯示患有第一類未分化鱗狀上皮細胞癌的病人約有百分之96機率,可在他們的血液中測到EBV病毒的DNA,但根據許多報導顯示,我們有理由相信EBV不是導致鼻咽癌發生的主因,而是促使鼻咽癌增生的發生,本論文之主要研究目的,是想找出導致鼻咽癌發生的相關基因,首先我們使用cDNA 微陣列分析去比較正常鼻咽黏膜上皮細胞與鼻咽癌的表現量,再由定量聚合酶連鎖反應(Quantitative RT-PCR)、西方點墨法(Western Blotting)的研究發現chemokine (CC motif) of ligand28 (CCL28)基因,在鼻咽癌細胞中有明顯增加,而且在進而研究CCL28在鼻咽癌中扮演的角色及其造成的影響時,我們發現Interferon alpha-inducible protein 6 (IFI6)基因在鼻咽癌細胞中也有明顯增加的表現量,尤其是在TW06N1細胞上,因此我們決定深入研究IFI6基因在鼻咽癌中扮演的角色以及其功能,首先我們訂購IFI6之shRNA ,將其感染到鼻咽癌細胞中,建立一個knockdown的系統,使鼻咽癌細胞中的IFI6表現量下降,之後我們去做一連串的細胞功能分析(functional analysis),發現鼻咽癌細胞不管在爬行能力、侵襲力、以
及細胞增長能力方面都有明顯下降的趨勢,而另外在細胞凋亡現象方面,我們也發現其凋亡現象增加,與此同時,我們也另外建立了另一個shCCL28之細胞株,一樣是用shRNA病毒去感染鼻咽癌細胞使其細胞中的CCL28的表現量下降,我們發現當CCL28的表現量下降時,IFI6的表現量也跟著下降,我們相信CCL28與IFI6之間可能存在一個調節的關係。在異種移植的鼻咽癌腫瘤 (NPC xenografts)長於NOD-SCID之老鼠的實驗中發現以抑制IFI6基因表現的shRNA所轉染的鼻咽癌細胞在NOD-SCID老鼠體內長到第六週時,腫瘤重量比控制組小了百分之七十八,在免疫染色與組織病理分析時發現抑制IFI6基因表達能減緩異種移植的腫瘤細胞生長並伴隨著嚴重的細胞凋亡。基於以上這些實驗結果 我們相信IFI6基因在未來很有潛力成為新的鼻咽癌治療標的。 | zh_TW |
| dc.description.abstract | Nasopharyngeal carcinoma (NPC) is the most common cancer originating in the nasopharynx. It is one of the most common cancers among East Asia (Taiwan,Hong Kong , Singapore,southern China) and Africa . The World Health Organization (WHO) criteria for nasopharyngeal cancer has been published. They are Type 1 .Differentiated squamous cell carcinoma , Type 2 .Non keratinizing carcinoma,Type 3. Undifferentiated carcinoma. Nasopharyngeal carcinoma is caused by a combination of factors including viral infection , environmental influences, and heredity. The viral influence is associated with infection with Epstein-Barr virus , EBV DNA was detectable in the blood plasma samples of 96% of patients with non-keratinizing NPC. The purpose of this research was to find out the genes associated with NPC pathogenesis . First , we use cDNA microarray analysis of mRNA expression between NPC cell lines and normal nasal mucosal epithelial cells,CCL28 gene expression was found significantly increased in NPC cell lines by quantitative RT-PCR and IHC. In our previous studied of the function of CCL28 gene in NPC , we found that Interferon alpha-inducible protein 6 ( IFI6 ) was also significantly increased in NPC , especially in NPC-TWO6N1. To further identify the relationship between CCL28 and IFI6 , we performed some investigation to clarify this condition. We found the CCL28 could affect the gene expression of IFI6 . In order to study the role of IFI6 in the molecular pathogenesis of NPC and its functions,we transfect shRNA in NPC cell to construct stable shIFI6 NPC cell lines as a knockdown system . we found the tumor cells could be down-regulated to express IFI6 mRNA and protein about 40-50% , We also found that when IFI6 was down-regulated , the ability of cell migration , invasion ,proliferation were decreased . On the other hand , the apoptosis of NPC was promoted. We also knocked down CCL28 by using shRNA to create a shCCL28 system and found that when CCL28 was down-regulated , the protein expression of IFI6 was decreased . However , when IFI6 knockdown , the gene expression of CCL28 was not significantly changed.
In vivo , we have injected shIFI6 NPC cell line to NOD-SCID mice for 6 weeks , the weight of tumor diminished about 78% and tumor size decreased about 55% after 6 weeks , accompanied by necrosis and apoptosis in the NPC-TW06N1 xenografts treated with IFI6 shRNA histopathologically. These novel findings of the functional role of IFI6 may have a potential implication in molecular target therapy for NPC. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T11:48:15Z (GMT). No. of bitstreams: 1 ntu-105-R01444011-1.pdf: 5021364 bytes, checksum: 995936cfe037fe0e38e3bbe1d963e359 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 目錄 Table of Contents
口試委員審定書 ii 致謝 Acknowledgement iii 中文摘要 v Abstract vii List of Figures xi List of Tables xiii Introduction 1 Nasopharyngeal carcinoma (NPC) 1 EtiologyofNPC…………………………………………………………………….3 Molecular Biomarkers and prognostic factorsofNPC………………………………………………………………………4 Interferon-inducible protein6(IFI6)……………………………………………………………………...7 Chemokine (C-C motif) ligand 28 (CCL28) 8 Materials and Methods 12 1. Cell culture 12 2. Extraction of RNA and Preparation of cDNA 13 3. Quantitative real-time PCR (qRT-PCR) 14 4. Statistical analysis of qRT-PCR results 15 5. Immunohistochemical staining 15 6. Western blotting. 17 7. Mini-plasmid purification 17 8. Amplification and Extraction of plasmids 18 9. Establishment of stable shIFI6 NPC cell lines by lentiviral vector system……………………………………………………………………………..19 10. MTT Assay 20 11. Scratch wound healing assay 20 12. Transwell migration assay 21 13. Invasion assay 21 14. Caspase-3 Fluorometric Assay 22 15. In vivo assay of xenograft growth 23 Results 24 IFI6 gene expression in NNM and NPC tumor cell lines 24 Establishment of the stable shIFI6 transfected NPC cell line . 24 IFI6 protein expression in NPC biopsy specimens………………………………..24 Functional analysis of IFI6 gene expression. 25 IFI6 influences the expressions of Caspase3 , Caspase9 and PARP in NPC cell lines to prevent apoptosis. 26 DMEM deprivation induced an apoptosis response in shIFI6 NPC-TW06N1 and NPC-TW01N1 cell lines………………………………………………………………………………………………………… 27 Functional analysis of IFI6 in SCID mice bearing NPC xenografts…………………………………………………………………………27 Figures 29 Discussion 52 Tables 56 References 58 List of Figures Figure 1: The IFI6 mRNA expression in NNM and NPC cell lines.. 29 Figure 2: Expression of IFI6 protein in NPC cell lines………………………………………………. …………………………………...30 Figure 3 :40 NPC patients’ biopsy specimens were examined by IFI6 immunostaining……………………………………………………………………….31 Figure 4: The expression of IFI6 protein in shIFI6 infected NPC –TW06N1. 32 Figure 5:. Effect of IFI6 knockdown on NPC cell proliferation……………………………………………………………………………33 Figure 6: Effect of IFI6 knockdown on NPC line migration.. 34 Figure 7: Effect of IFI6 knockdown on other NPC line migration. 36 Figure 8: Effect of invasion ability in IFI6-knockdown NPC-TW06N1 37 Figure 9: Effect of IFI6 knockdown on Caspase3 and Caspase9 and PARP protein levels by Western blotting…………………………………………………………………………………38 Figure10.To determine the increased enzymatic activity of the Caspase-3 class of proteases in apoptotic cells by fluorometricreaction…………………………………………………………………40 Figure11: DMEM deprivation triggers apoptosis in NPC cell line cells ……………………………………………………………………………………41 Figure 12: DMEM deprivation induce apoptosis activation in NPC cell lines…………………………………………...43 Figure 13: In vivo study of shIFI6-transfected NPC-TW06N1 cells…………………………………………………………………………………….45 Figure14:SCID mice bearing NPC IFI6-knockdown xenografts showing decrease of xenograft sizes and weight…………………………………………………………………………46 Figure 15: Decrease in the gene expression of IFI6 in NPC –TW06N1 from SCID mice xenografts…………………………………………………………………………….47 Figure 16:Immunohistochemical staining of IFI6 in the SCID mice bearing the IFI6 by lentiviral-infected NPC –TW06N1 xenograft……………………………………..............................................................48 Figure 17: Histopathological morphology of the lentiviral-infected NPC –TW06N1 xenograft in SCID mice……………………………………………………………………………………49 Figure 18:The expression of CCL28 mRNA in shIFI6 infected NPC-TW06N1……………………………………………………….50 Figure19:Decrease of IFI6 gene expression in CCL28 knockdown cells……………………………………………………………………………………51 List of Tables Table 1: The primers used to quantitative RT-PCR (qRT-PCR) 56 Table 2: Map of shIFI6, shRNA(-)control and positive control 57 | |
| dc.language.iso | en | |
| dc.subject | 鼻咽癌 | zh_TW |
| dc.subject | IFI6 | zh_TW |
| dc.subject | IFI6之體內外功能分析 | zh_TW |
| dc.subject | 腫瘤發生 | zh_TW |
| dc.subject | CCL28 | zh_TW |
| dc.subject | CCL28 C-C motif chemokine ligand 28(CCL28) | en |
| dc.subject | NPC | en |
| dc.subject | Interferon alpha inducible protein 6 (IFI6) | en |
| dc.subject | Functional analysis of IFI6 in vitro and in vivo | en |
| dc.subject | Tumorigenesis | en |
| dc.title | IFI6 基因在鼻咽癌腫瘤生長所扮演之角色 | zh_TW |
| dc.title | The role of IFI6 gene in nasopharyngeal carcinoma tumorigenesis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳漢忠(Han-Chung Wu),黃祥博(Hsiang-Po Huang),余明俊(Ming-Jiun Yu) | |
| dc.subject.keyword | 鼻咽癌,腫瘤發生,IFI6,CCL28,IFI6之體內外功能分析, | zh_TW |
| dc.subject.keyword | NPC,Tumorigenesis,Interferon alpha inducible protein 6 (IFI6),CCL28 C-C motif chemokine ligand 28(CCL28),Functional analysis of IFI6 in vitro and in vivo, | en |
| dc.relation.page | 63 | |
| dc.identifier.doi | 10.6342/NTU201602481 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-08-12 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 病理學研究所 | zh_TW |
| 顯示於系所單位: | 病理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 4.9 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
