Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49781
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李世光(Chih-Kung Lee)
dc.contributor.authorSheng-Lin Chengen
dc.contributor.author鄭聖霖zh_TW
dc.date.accessioned2021-06-15T11:47:59Z-
dc.date.available2018-08-31
dc.date.copyright2016-08-31
dc.date.issued2016
dc.date.submitted2016-08-12
dc.identifier.citation1. 陳妮婉, 張彩秀, and 張素惠, 護理人員壓瘡預防行為之系統性文獻查證. 澄清醫護管理雜誌, 2013. 9(2): p. 40-47.
2. Mobily, P.R. and L.S. Kelley, Iatrogenesis in the elderly: factors of immobility. Journal of gerontological nursing, 1991. 17(9): p. 5-9.
3. Shahin, E.S., T. Dassen, and R.J. Halfens, Pressure ulcer prevalence and incidence in intensive care patients: a literature review. Nursing in critical care, 2008. 13(2): p. 71-79.
4. García‐Fernández, F.P., et al., A New Theoretical Model for the Development of Pressure Ulcers and Other Dependence‐Related Lesions. Journal of Nursing Scholarship, 2014. 46(1): p. 28-38.
5. Smit, C., et al., Gluteal blood flow and oxygenation during electrical stimulation-induced muscle activation versus pressure relief movements in wheelchair users with a spinal cord injury. Spinal cord, 2013. 51(9): p. 694-699.
6. Buckwalter, K.C. and J.M. Stolley, Iatrogenesis in the elderly. Journal of Gerontological Nursing, 1991. 17(9): p. 3-3.
7. Shabshin, N., A. Herman, and V. Ougortsin, Use of weight-bearing MRI for evaluating wheelchair cushions based on internal soft-tissue deformations under ischial tuberosities. Journal of rehabilitation research and development, 2010. 47(1): p. 31.
8. Arias, S., et al. A pressure distribution measurement system for supporting areas of wheelchair users. in Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE. 2013. IEEE.
9. Levy, A., K. Kopplin, and A. Gefen, An air-cell-based cushion for pressure ulcer protection remarkably reduces tissue stresses in the seated buttocks with respect to foams: finite element studies. Journal of tissue viability, 2014. 23(1): p. 13-23.
10. 祝旭東 and 陳美香, 老人居家常用輔助器具. 護理雜誌, 2006. 53(5): p. 20-27.
11. Sonenblum, S.E., et al., Effects of wheelchair cushions and pressure relief maneuvers on ischial interface pressure and blood flow in people with spinal cord injury. Archives of physical medicine and rehabilitation, 2014. 95(7): p. 1350-1357.
12. Tsai, T.H., Research and Development of Next Generation Air Cushion Smart System for Pressure Ulcer, Master dissertation. 2015.
13. 許雪貞, 莊素完, and 李順倫, 提升某加護中心壓瘡癒合率之專案. 護理雜誌, 2006. 53: p. 44-51.
14. Mount Nittany Health.
15. 楊勤熒, 壓瘡預防與預防與傷口照護概念.
16. European National Pressure Ulcer Advisory panels , EPUAP.
17. National Pressure Ulcer Advisory Panel , N., Pressure Ulcer Category/Staging Illustrations. 2015.
18. Sun, P., Three-dimensional displacement measurement by using reversed phase-shifting electronic speckle pattern interferometry. Optical Engineering, 2006. 45(9): p. 093602-093602-5.
19. Xie, X., et al. Review and comparison of temporal-and spatial-phase shift speckle pattern interferometry for 3D deformation measurement. in Sixth International Symposium on Precision Mechanical Measurements. 2013. International Society for Optics and Photonics.
20. Samala, P.R., et al. Strain measurement of a mouse bone by 3D-electronic speckle pattern interferometry (3D-ESPI). in Optics & Photonics 2005. 2005. International Society for Optics and Photonics.
21. Hild, F. and S. Roux, Digital image correlation. 2012: Wiley-VCH, Weinheim.
22. Yoneyama, S. and G. Murasawa, Digital image correlation. Experimental Mechanics. Eolss Publishers, 2009.
23. Berins, M., Plastics Engineering Handbook Of The Society Of The Plastics Industry. Springer Science & Business Media, 1991. Fifth Edition.
24. 李學鋒, 塑料模具設計與製造課程. 2011.
25. 施志哲, 片狀玻璃纖維強化熱塑性塑膠成形材料. 工研院材料雜誌, 2008. 254期.
26. 蔡國雄, PVC加工實務. 國立圖書有限公司, 1982.
27. 許順文 and 葉燦輝, 塑膠容器中之塑化劑 (鄰苯二甲酸脂類) 危害. 2006.
28. Thermoforming Process Guide. 1992: Trademark of The Dow Chemical Company.
29. Transactions on Mechatronics. IEEE/ASME, 1996. Vol. 1.
30. 鄒治華, 機電整合應用與實習. 1999: 文京圖書.
31. 吳金戌、沈慶陽、郭庭吉, 8051單晶片微電腦實習與應用. 松崗電腦圖書公司, 1999.
32. Arduino https://www.arduino.cc/en/Main/ArduinoBoardMegaADK. 2016.
33. RDP Group , http://www.rdpe.com/ex/hiw-sgpt.htm. 2015.
34. 卓傑企業有限公司, 壓力感測器與控制實驗系統 G35/EV
35. Honeywell, Pressure sensors SSCSANN100PAAA5 datasheet.
36. Rowe, S.H.a.W.T.W., Surface Topography of Non-Optical Surfaces by Projected Interference Fringes. Nature, 1967. 216(5117): p. 786-787.
37. Case, S.K., J. A. Jalkio, and R. C. Kim, 3-D Vision System Analysis and Design in Three-Dimensional Machine Vision. Takeo Kanade, Ed., Kluwer Academic Publishers,Norwell, MA,, 1987: p. 63-95.
38. 王誠, 最新高精密度數位式3D量測之原理與應用實務(上). 震雄工業月刊雜誌, 1988.
39. Malacara, D., Optical shop testing. Vol. 59. 2007: John Wiley & Sons.
40. Avilagh, A.J. and A.H. Rezaie, Accuracy enhancement of three-dimensional reconstruction using phase-shifting shadow moiré. Journal of Electronic Imaging, 2013. 22(2): p. 023024-023024.
41. Cusack, R., J. Huntley, and H. Goldrein, Improved noise-immune phase-unwrapping algorithm. Applied Optics, 1995. 34(5): p. 781-789.
42. Geng, J., Structured-light 3D surface imaging: a tutorial. Advances in Optics and Photonics, 2011. 3(2): p. 128-160.
43. Hsu, K.-Y., Research and Development of Two-dimensional Windowed Fourier Transform Based Phase Unwrapping Algorithms for Interference Fringe Analysis. Institute of Applied Mechanics College of Engineering National Taiwan University Master Thesis, 2015.
44. Takeda, M. and K. Mutoh, Fourier transform profilometry for the automatic measurement of 3-D object shapes. Applied optics, 1983. 22(24): p. 3977-3982.
45. Quan, C., H. Niu, and C. Tay, An improved windowed Fourier transform for fringe demodulation. Optics & Laser Technology, 2010. 42(1): p. 126-131.
46. Takeda, M., H. Ina, and S. Kobayashi, Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. JosA, 1982. 72(1): p. 156-160.
47. Herráez, M.A., et al., Robust, fast, and effective two-dimensional automatic phase unwrapping algorithm based on image decomposition. Applied Optics, 2002. 41(35): p. 7445-7455.
48. Pritt, M.D. and J.S. Shipman, Least-squares two-dimensional phase unwrapping using FFT's. IEEE transactions on geoscience and remote sensing, 1994. 32(3): p. 706-708.
49. 陳昭宇, 高速電子斑點干涉儀之研製: 整合雷射都卜勒干涉術與時進相移法之創新設計. 臺灣大學應用力學研究所學位論文, 2005: p. 1-181.
50. Su, X. and W. Chen, Fourier transform profilometry:: a review. Optics and lasers in Engineering, 2001. 35(5): p. 263-284.
51. COMSOL, Nonlinear Structural Materials Module (Model Library Manual) - Hyperelastic Seal Solved with COMSOL Multiphysics 5.0
52. Halliday, D.R., Robert; Walker, Jerl, Fundamental of Physics USA: John Wiley and Sons, Inc. 7.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49781-
dc.description.abstract壓瘡是對需使用輪椅行動的脊髓損傷患者常見且嚴重的問題之一,除了本身對患者造成生理及經濟上的負擔之外,對照護資源的需求也是相當可觀,且對於整個醫療體系更為一大挑戰。為了能在根本上解決壓瘡的問題,本研究團隊發展出一具有氣囊陣列之智能型氣囊式座墊,以提供區域性減壓及加壓之功能,並提供量測病人體量之功能,提供醫師診斷之依據。為了能將氣囊與病人的資訊連結,本篇論文發展可量測高壓氣囊受壓變形的投影式疊紋法系統,以探討智能型座墊上的氣囊受壓後行為表現,得到氣囊之特性曲線,以做為控制智能型氣囊式座墊之根據,並藉此有效提升壓瘡的預防效能。
以投影式疊紋法量測大變形技術,可量測出氣囊受壓前後的表面輪廓以及大變形,並在不同施加重量量測下,依照截面曲線分析方式得知氣囊的體積、高度、膨脹量等等物理量和相關性趨勢,並且在二維的觀測角度之下,以二元四次多項式方程擬合出氣囊膨脹所形成的橢圓截面積,證實氣囊在不同重量下的膨脹行為。再搭配有限元素模擬,針對氣囊的材料表面受壓分佈、側邊形變位移量以及內部氣壓的計算做分析,並與投影式疊紋法測得的數據作比較,驗證出模擬結果與光學量測結果的相符程度,最後應用Arduino控制器操控單顆氣囊充氣與放氣,並且以持續施壓作重量測試,提供智能型座墊量測乘坐者體重的依據;這種新開發的智能座墊具有選擇性地減少局部臀部組織受壓的能力,此外,還可以藉由量測出病人體重,提供醫務人員臨床診斷資訊,使醫務人員可以依照患者身體重量指數提供正確的藥物劑量,並有效治療甚至預防壓瘡的產生。
zh_TW
dc.description.abstractPressure ulcer is one of the common problems for wheelchair patients with spinal cord injury. It has become not only a physical and economic burden on wheelchair patients, but also a big challenge to health care system. In order to fundamental overcome this problem, we developed a smart air cushion system made by air-cell array. By providing the capability to adjust pressure of each air cell, localized stress can be decreased dynamically. To identify the characteristic profile of air cell and use it for controlling air cell function, we develop a Fringe Projection System to measure the large deformation of a compressed air cell. Thus, the characterized performance of air cell and internal pressure can be correlated. This characteristic curve will be used as a reference to operate the smart air cushion system and provide weight value for diagnostic purposes. Thus, the purpose of this study is to understand the behavior of the air cell of a smart air cushion system. .
Fringe projection method is used to measure the surface profile of a air cell, the large deformation under different applied weight is measured. Physical parameters of air cells volume, height and amount of expansion are studied to correlated to specific trends in cross section analysis. Under the two-dimensional measurement, it is confirmed that the expanded behavior of the air cell under different weights has an elliptical deformation and is fitted by a bivariate quartic polynomial equation. Subsequently, COMSOL multiphysics is used to perform finite element method to simulate surface pressure distribution of an air cell and deformation of the sidewall. In addition, by comparing with fringe projection measured data, the results of the optical measurement and consistency are verified. Finally, using an open access Arduino controller to control a single air cell inflation and deflationfor studying the performance of the air call under different loading.
Based on the quantified characteristic curve, it can be applied to selectively reduce the local buttock tissue pressure by using the smart air cushion system. In addition, it can take a patient’s weight measurement for diagnosing purposes.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:47:59Z (GMT). No. of bitstreams: 1
ntu-105-R03525040-1.pdf: 8771359 bytes, checksum: d0555ba40599565a5751281b9ae50414 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents誌謝 I
中文摘要 II
Abstract III
目錄 V
圖目錄 VIII
表目錄 XVI
Chapter1 緒論 1
1.1 前言 1
1.2 文獻回顧 – 智能型座墊設計理念及現今預防壓瘡因應對策 2
1.2.1 智能型座墊設計 - 座墊壓力分佈 3
1.2.2 不同座墊材質對臀部壓力分析 - 泡棉座墊vs空氣座墊 5
1.2.3 研究團隊先前發展的智能型座墊 12
1.3 本篇論文研究目標 16
1.4 論文架構 17
Chapter2 新世代智慧型壓瘡預防氣墊 – 臨床診斷數據化趨勢 18
2.1 壓瘡生成機制 18
2.2 臨床診斷數據化 – 光學量測構思及有限元素法模擬 22
Chapter3 實驗原理 25
3.1 熱壓成型基本原理 25
3.1.1 熱壓成型簡介 25
3.1.2 熱壓成型之氣囊材料介紹 28
3.1.3 熱壓成型模具介紹 28
3.2 機電整合原理 29
3.2.1 機電整合基本原理 29
3.2.2 Arduino單晶片(Single Chip)控制器原理 30
3.2.3 壓力感測器原理 32
3.3 氣囊氣壓計算 34
Chapter4 光學投影式疊紋法原理 36
4.1 投影式疊紋法(Fringe Projection)光學量測技術 36
4.1.1 Fringe Projection 38
4.1.2 Structured Lighting Technique 42
4.1.3 Shadow Moiré Technique 42
4.2 Fringe Projection 三維相位重建技術(phase unwrapping) 43
4.2.1 相位主幅角圖(Phase wrap map) 44
4.2.2 傅立葉轉換法(Fourier transform method): 45
4.2.3 相位重建技術(Phase unwrapping) 47
Chapter5 實驗裝置架構及氣囊製備 51
5.1 Fringe Projection量測平台系統架構 51
5.1.1 本篇論文光學實驗裝置 51
5.1.2 MATLAB解像計算及資料分析 53
5.2 熱壓成型製程 54
5.2.1 模具設計與製作 54
5.2.2 熱壓成型實驗製程 56
5.2.3 氣囊熱壓印封膜製程 60
5.2.4 熱壓封膜溫度的選擇 63
5.3 智能型座墊系統架構 66
5.4 氣囊作動電路設計 67
5.4.1 驅動電路設計 67
5.4.2 氣囊充、放氣控制 68
Chapter6 實驗結果分析與討論 71
6.1 Finite Element Method - COMSOL Multiphysics 71
6.1.1 氣囊受壓形變分析 71
6.1.2 氣囊內部壓力與膨脹量的分析 75
6.2 投影式疊紋法光學量測流程 75
6.3 投影式疊紋法量測高壓氣囊受壓變形 78
6.3.1 投影式疊紋法 -相位重建圖量測結果分析 78
6.3.2 投影式疊紋法 - 數據分析 81
6.4 投影式疊紋法量測驗證 98
6.4.1 壓力感測器 & 游標卡尺驗證 98
6.4.2 有限元素模擬驗證 99
6.4.3 投影式疊紋法量測誤差討論 101
6.5 單顆氣囊重量計算結果 106
6.5.1 單顆氣囊負重測試 106
6.5.2 單顆氣囊充、放氣量測 108
6.5.3 智能型座墊系統體重量測 110
Chapter7 結論與未來展望 112
7.1 結論 112
7.2 未來展望 113
附錄 115
參考資料 117
dc.language.isozh-TW
dc.subject壓力感測器zh_TW
dc.subject壓瘡zh_TW
dc.subject熱壓成型zh_TW
dc.subject投影式疊紋法zh_TW
dc.subject快速傅立葉轉換法zh_TW
dc.subject有限元素模擬zh_TW
dc.subjectArduinozh_TW
dc.subjectFringe projectionen
dc.subjectpressure sensoren
dc.subjectArduinoen
dc.subjectFinite element modelingen
dc.subjectFast Fourier Transform (FFT)en
dc.subjectPressure ulcers (PU)en
dc.subjectthermoformingen
dc.title可量測高壓氣囊受壓變形的投影式疊紋法系統開發
- 提升氣囊式智能座墊系統之預防壓瘡效能
zh_TW
dc.titleDevelopment of a Projection Moiré System for Measuring large deformation of a compressed air cell - Advancing a smart air cushion system for preventing pressure ulcersen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.coadvisor許聿翔(Yu-Hsiang Hsu)
dc.contributor.oralexamcommittee吳文中(Wen-Jong Wu),黃君偉(Jiun-Woei Huang),李世仁
dc.subject.keyword壓瘡,熱壓成型,投影式疊紋法,快速傅立葉轉換法,有限元素模擬,Arduino,壓力感測器,zh_TW
dc.subject.keywordPressure ulcers (PU),thermoforming,Fringe projection,Fast Fourier Transform (FFT),Finite element modeling,Arduino,pressure sensor,en
dc.relation.page119
dc.identifier.doi10.6342/NTU201602131
dc.rights.note有償授權
dc.date.accepted2016-08-12
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
8.57 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved